math 5490 11 12 2014
play

Math 5490 11/12/2014 Dynamical Systems Math 5490 Stommels Model - PDF document

Math 5490 11/12/2014 Dynamical Systems Math 5490 Stommels Model November 12, 2014 Topics in Applied Mathematics: Henry Stommel, Thermohaline Convection with Two Stable Regimes of Flow , T ELLUS XII (1961), 224-230. Introduction to the


  1. Math 5490 11/12/2014 Dynamical Systems Math 5490 Stommel’s Model November 12, 2014 Topics in Applied Mathematics: Henry Stommel, Thermohaline Convection with Two Stable Regimes of Flow , T ELLUS XII (1961), 224-230. Introduction to the Mathematics of Climate Mondays and Wednesdays 2:30 – 3:45 http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/ Streaming video is available at http://www.ima.umn.edu/videos/ Click on the link: "Live Streaming from 305 Lind Hall". Participation: https://umconnect.umn.edu/mathclimate Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model dx     (1 x ) f x T S dT          d c T ( T ) 2 q T y x d cdt   dt T S dy    1 y f y   dS d S c           d ( ) 2 d S S q S R k          dt c T 4 T f y Rx 0           ( 2 2 ) kq T S 2 q 1 2 0  flow rate f  flow      c (1 x ) f x 0 x   e e e resistance f Look for equilibria: 1     1 y f y 0 y  e e e 1 f Solve for f ,  1 R           ( ; , ) - f y Rx f R then solve for dx e e        (1 x ) f x 1 f f salinity -  equilibrium point. d     f ( ; , ) f R dy    temperature 1 y f y  d     f y Rx Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model  R 1       f ( ; , ) f R     ( ) f f 1 f Graphical Interpretation Equilibria Equilibria  1.2 ( ) f Graphical Interpretation 1  f 1.2 0.8 1    1 6 0.6 f 0.8  R 2 density 0.4   0.6   1 6 1 5 0.2 density  0.4 R 2 0 0.2   ‐ 0.2 1 5 0 ‐ 0.4 ‐ 0.2 ‐ 0.6 ‐ 2 ‐ 1.5 ‐ 1 ‐ 0.5 0 0.5 1 1.5 2 ‐ 0.4 f (flow rate ) ‐ 0.6 Temperature dominates. Salinity dominates. ‐ 2 ‐ 1.5 ‐ 1 ‐ 0.5 0 0.5 1 1.5 2 capillary flow: cold to warm capillary flow: warm to cold f (flow rate ) Math 5490 11/12/2014 Math 5490 11/12/2014 Richard McGehee, University of Minnesota 1

  2. Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model Equilibrium Conditions       (1 x ) f x 0 x Temperature e e e   Salinity dominates. f dominates. 1 capillary flow:     1 y f y 0 y capillary flow: e e e  1 f warm to cold cold to warm  1 R        f y Rx    e e 1 f f Solve for f ,   1 6 then solve for equilibrium point.  R 2          1 5            f 1 f f f R 1 f         2       f (1 ) f f ( R 1) (1 R ) f               3 f (1 ) f f f (1 R ) f ( R 1) 0 Stommel, T ELLUS XII (1961) Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model Equilibrium Conditions: Solving for f  ( ) f Graphical Interpretation  3              f (1 ) f f f (1 R ) f ( R 1) 0 1.2      Parameters: 1 6 R 2 1 5 1  f           1 3 1 1 1 1 1 1 f (1 ) f f f (1 2 ) f (2 1) 0 0.8 5 5 6 5 6 6 6   1 6 0.6 3  7     1 f f f 1 f 2 f 1 0  5 30 30 3 6 R 2 density 0.4    Case 1: f 0 1 5 0.2     1 3 7 2 21 1 0 f f f 0 5 30 30 6 ‐ 0.2 f  Solve numerically. Only one positive root: 0.21909 ‐ 0.4  Case 2: f 0 ‐ 0.6 ‐ 2 ‐ 1.5 ‐ 1 ‐ 0.5 0 0.5 1 1.5 2 1 3  7 2  19  1  f f f 0 f (flow rate ) 5 30 30 6 f  -1.068 -0.307 0.219 Solve numerically. Two negative roots: -1.06791, -0.30703 Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model f  0   1 6 Rest Points  R 2  1 1      1 5 x , y     Temperature e e f 1 6 f 1 f f  dominates. 0 c b capillary flow:  point : a f -1.06791: cold to warm 1 1     x 0.13500, y 0.48358   e e 1 6 -1.06791 1 -1.06791  point : b f -0.30703: a 1 1 f      0 x 0.35184, y 0.76510   e e 1 6 -1.06791 1 -1.06791   1 6 Salinity dominates.  point : c 0.21909:  f R 2 capillary flow:   1 1 1 5     x 0.43205, y 0.82 028 warm to cold   e e 1 6 -1.06791 1 -1.06791 Math 5490 11/12/2014 Math 5490 11/12/2014 Richard McGehee, University of Minnesota 2

  3. Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model   1 6 Structure of Rest Points Rest Point c  R 2     f 0.21909 0, x 0.43205, y 0.82028        x (1 x ) f x e e 1 5     f y Rx     y 1 y f y Jacobian matrix Jacobian matrix     2 1 R 1        1 0.21909 0.43205 0.43205 f x x           6 f f   1 5 1 5 f f 1 R R 1                    f 0 : f y x , , f x x           x y  R y 1  2 1 x y           1 f y 0.82028 1 0.21909 0.82028                 1 5 1 5 f f 1 R f R f 1             f 0 : f y x , , y 1 f y              x y 4.70627 2.16025 x y      8.20284 2.88233  f  f  0 0       determinant 4.15521 0 R 1 R 1           f x x   f x x         stable trace 1.82394 0        spiral  R y 1   R y 1  discriminant 13.29410 0         1 f y 1 f y             Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model f    0 1 6 Rest Point b  R 2        f 0.30703 0, x 0.35184, y 0.76510 1 5 e e Temperature f  dominates. 0 Jacobian matrix c b   capillary flow:   2 1 R 1  1          0.30703 0.35184 0.35184 f x x     6 cold to warm   1 5 1 5      stable spiral    R y 1  2 1          1 f y  0.76510 1 0.30703 0.76510          1 5 1 5 a    3.04476 1.75922   f   0    7.65095 5.13250   1 6 Salinity dominates.  R 2 capillary flow:    eigenvalue 7.60883 eigenvalue 0.28486   1 5 warm to cold saddle     0.61023 0.28604     eigenvector  eigenvector   0.79222   0.95822  Math 5490 11/12/2014 Math 5490 11/12/2014 Dynamical Systems Dynamical Systems Stommel’s Model Stommel’s Model f    0 1 6 Rest Point a  stable vector R 2       1 5 f -1.06791 0, x 0.13500, y 0.48358 e e f  0 Jacobian matrix c unstable vector b     2 1 R 1  1         -1.06791 0.13500 0.13500    f x x    6 1 5 1 5      stable spiral    R y 1  2 1         1 f y 0.48358 1 -1.06791 0.48358          1 5 1 5    a saddle 1 6   0.11541 -0.67500     R 2   0.48358 -4.48581   1 5     f  eigenvalue 0.76088 eigenvalue 3.60951 0 stable node     0.61023 0.17831     eigenvector  eigenvector   0.79222   0.98398  Math 5490 11/12/2014 Math 5490 11/12/2014 Richard McGehee, University of Minnesota 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend