math 5490 11 3 2014
play

Math 5490 11/3/2014 Dynamical Systems Math 5490 Summary So Far - PDF document

Math 5490 11/3/2014 Dynamical Systems Math 5490 Summary So Far November 3, 2014 Topics in Applied Mathematics: dx a x a y x a a d dt 11 12 x Introduction to the Mathematics of Climate dt


  1. Math 5490 11/3/2014 Dynamical Systems Math 5490 Summary So Far November 3, 2014 Topics in Applied Mathematics: dx   a x a y   x  a a  d dt 11 12 x Introduction to the Mathematics of Climate    dt  A A 11 12 x x    dy   y  a a   a x  a y 21 22 21 22 Mondays and Wednesdays 2:30 – 3:45 dt http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/ Eigenvalues and eigenvectors      Streaming video is available at Av v v 0 http://www.ima.umn.edu/videos/ v u If and are linearly independent eigenvectors Click on the link: "Live Streaming from 305 Lind Hall".   with corresponding eigenvalues and , Participation: then the general solution is https://umconnect.umn.edu/mathclimate    t  t t c e v c e u x ( ) 1 2 c c where and are arbitrary constants. 1 2 Linear independence : one is not a multiple of the other. Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates   x   x d   A       x             d x x d   dt y y  A S  S 1 AS                  y y y dt   dt              v   u  v  1 u  1 A Suppose that   and   are linearly independent eigenvectors of v u          S  v u  Av v Au u   2 2     with corresponding eigenvalues and . Introduce new variables and :    0   x   x  v   u    v u          AS  A v u     Av Au    v u    v u    S              v   u  1 1  1 1  S          , i.e.     0  v   u  v u     y   y         2 2 2 2  v u  S  1 1  v u    v  u  where   =   . v u     v  u   1 1      a a   v u  2 2  v  u    11 12 1 1   A v u       2 2 a a v u        d   d   d   x   x   21 22 2 2  v u     0       S S A AS 1 1 Then                 a v a v a u a u     dt   dt   dt   y   y   v u    11 1 12 2 11 1 12 2    0   2 2    a v a v a u a u         d 21 1 22 2 21 1 22 2   0   S 1 AS         v u        Av Au dt          0  Math 5490 11/3/2014 Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates     x           x         d   x   x d d   x   x d      S  1  S  1 A     S AS A     S AS                 y    y    dt   y   y     dt     dt   y   y     dt     S   v u  Av   v Au   u S   v u  Av   v Au   u           0 0 AS  A v u     Av Au     v  u    v u    S  AS  A v u     Av Au     v  u    v u    S                        0  0     S 1 AS    d         1   S AS          dt        dx d     a x a y dt 11 12 dt  dy d  a x  a y   dt 21 22 dt Math 5490 11/3/2014 Math 5490 11/3/2014 Richard McGehee, University of Minnesota 1

  2. Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates Example Example     i  i  2 1 dx dx S   S    x  y     y i  i  eigenvalues: 2 and 1 2 eigenvalues:    1 1      1 1  dt dt 1 2 0 1       A     A   i  i   2 1  dy dy     2 0    1 0 eigenvectors:   and   .  1 0 eigenvectors:      i  x    x 0             1 1 1 1 dt  dt   0 1    i  0     x   z  i i    z  iz iw  x  iz  iw     x    2 S                           x 2 1 2  y w w z w  S        1 1      y  z  w               y        y         1 1 dx dx dz  d  x  y   y  iz 2   2 dt     dt   dt x x iz iw 2 dt dy dy dw        y d y z w     x x iw    dt dt dt dt Math 5490 11/3/2014 Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Changing Coordinates Example dz Example  iz dx     y x iz iw dt dx  ax   y dt   x  a      x   x  a    d dw   dt y z w   A A              iw dy dt y  a y y  a            x dt dy   x  ay dt dt Note that one of these equations is redundant. z  y  ix 2   A  a  a  a  w  z trace( ) 2 w  y  ix 2      A a 2 2 det( ) dr dx    y 0 A   I   2       2  a  a 2   2 dz det( ) 2 dt dt dt  iz d  dy   1 x dt      a  a  a   2 4 2 4 2 4 2 4 2 dt       a i The eigenvalues are 2 2 complex Cartesian polar     a i a i and Math 5490 11/3/2014 Math 5490 11/3/2014 Dynamical Systems Dynamical Systems Changing Coordinates Complex Eigenvalues dx dz dx dy    ax y   i Then dt   dt dt dt z x iy Let . A If is a matrix with real elements and dy  ax   y  i x   iay    x ay  dt A v if is an eigenvalue of with corrresponding eigenvector ,  a  i  x  iy ( )( )  A v then is an eigenvalue of with corresponding eigenvector . dz        a i   t i a i   t at i t a i z z t  z e ( )  r e e ( )  r e e ( ) ( ) Solution: ( ) 0 0 dt 0 0 0         Av v Av v Av v re  z  i Let . dr  dz dr d  ar   i  i        i  r t  r e at e rie a i z a i re Then ( ) ( ) dt ( ) 0 dt dt dt Solution:   t     t d ( )  dr d   0  ri  a  i  r ( ) dt dt dt Math 5490 11/3/2014 Math 5490 11/3/2014 Richard McGehee, University of Minnesota 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend