ee 612 lecture 24 cmos circuits part 1
play

EE-612: Lecture 24: CMOS Circuits: Part 1 Mark Lundstrom - PowerPoint PPT Presentation

EE-612: Lecture 24: CMOS Circuits: Part 1 Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1 Outline 1) Review 2) CMOS circuits 3) The CMOS


  1. EE-612: Lecture 24: CMOS Circuits: Part 1 Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1

  2. Outline 1) Review 2) CMOS circuits 3) The CMOS inverter 4) Speed Lundstrom EE-612 F06 2

  3. MOSFETs PMOS NMOS I D V GS − V GS V DS Lundstrom EE-612 F06 3

  4. output conductance ( ) − 1 o = ∂ I D / ∂ V DS r ( ) I D = I DSAT 1 + λ V DS I D channel length modulation ‘DIBL above threshold’ V DS Lundstrom EE-612 F06 4

  5. small signal gain V DD R D V OUT + A V υ S sin ω t ( ) A V = − g m R D || r V BIAS + υ S sin ω t o N r o g m = ∂ I D ∂ V GS V DS Lundstrom EE-612 F06 5

  6. Outline 1) Review 2) CMOS circuits 3) The CMOS inverter 4) Speed 5) Power 6) Circuit performance Lundstrom EE-612 F06 6

  7. ideal CMOS inverter transfer characteristic V DD S B V DD PMOS V OUT --> D V IN V OUT D NMOS V DD V DD /2 S B V IN --> Lundstrom EE-612 F06 7

  8. CMOS inverter (cross-section) Courtesy of Dr. Lynn Fuller of Rochester Institute of Technology. http://www.rit.edu/~lffeee/AdvCmos2003.pdf Lundstrom EE-612 F06 8

  9. CMOS inverter (top view) Lundstrom EE-612 F06 9

  10. technology-independent design rules alignment 2 λ Resolution 2 λ λ λ minimum gate length = 2 λ W min = 4 λ minimum linewidth = 2-3 λ 2 λ × 2 λ (for this layout) minimum line spacing = 2-3 λ λ Lundstrom EE-612 F06 10

  11. 2-input NAND gate V AND dd A B C 0 0 0 0 1 0 P1 P2 1 0 0 V C 1 1 1 out V A N1 in1 NAND A B C 0 0 1 V B N2 0 1 1 in2 1 0 1 1 1 0 Lundstrom EE-612 F06 11

  12. dynamic logic: NOR gate V DD A B C OUT 0 0 0 1 φ precharge 0 1 0 0 V out V IN C L A C B φ eval eval V DD φ evaluate pre pre Lundstrom EE-612 F06 12

  13. dynamic logic V DD • M-input logic needs M+2 transistors (2M for CMOS) φ precharge V out • ‘no’ standby power C L • minimum frequency Logic function φ evaluate Lundstrom EE-612 F06 13

  14. transmission gates C C A A B B C C Lundstrom EE-612 F06 14

  15. transmission gates: high to low C = 0 V G D S A = 0 V V DD → 0 V B : S D G C = V DD V NMOS can discharge the output all the way to 0V; PMOS can’t. Lundstrom EE-612 F06 15

  16. transmission gates: low to high C = 0 V G S D A = V DD V 0 → V DD V B : D S G C = V DD V PMOS can charge the output all the way to V DD V; NMOS can’t. Lundstrom EE-612 F06 16

  17. multiplexer with transmission gates S A S F = AS + BS B From Hodges, Jackson, and Saleh, Analysis and Design of Digital Integrated Circuits, 3rd Ed., McGraw-Hill, 2004. Lundstrom EE-612 F06 17

  18. memories memory array bit lines SRAM row decoder word lines DRAM Flash, etc. memory cell column decoder sense amp write driver Lundstrom EE-612 F06 18

  19. SRAM cell wordline 1 0 2 0 1 0 1 1 0 1 access transistors bitline bitline Lundstrom EE-612 F06 19

  20. 6 transistor SRAM cell V DD bitline bitline wordline Lundstrom EE-612 F06 20

  21. 6 transistor SRAM cell (ii) • SRAM consumes most of the area on a CPU chip • steady state power determined by leakage (use high V T ) • small area with optimized layout • minimum W / L - sensitive to variations Lundstrom EE-612 F06 21

  22. for more information on CMOS circuits Hodges, Jackson, and Saleh, Analysis and Design of Digital Integrated Circuits, 3rd Ed., McGraw-Hill, 2004. Lundstrom EE-612 F06 22

  23. Outline 1) Review 2) CMOS circuits 3) The CMOS inverter 4) Speed Lundstrom EE-612 F06 23

  24. CMOS inverter transfer characteristic V DD S B V DD PMOS V OUT --> D V DD /2 V IN V OUT D NMOS V DD V DD /2 S B V IN --> Lundstrom EE-612 F06 24

  25. CMOS inverter: voltages V DD S B V gs = V in − V DD PMOS V ds = V out − V DD D V IN V OUT D V gs = V in NMOS V ds = V out S B Lundstrom EE-612 F06 25

  26. CMOS inverter: transfer characteristric V gs = V in V gs = V in − V DD 0 → V DD V in : V ds = V out V ds = V out − V DD V gs = V DD I D V gs = − V DD V gs = 0 V gs = 0 V DS V out Lundstrom EE-612 F06 26

  27. sizing the P-MOSFET 130 nm technology (L G = 60 nm) PMOS NMOS W P ≈ 2 W N I-V curves for low V T device Intel Technical J., Vol. 6, May 16, 2002. Lundstrom EE-612 F06 27

  28. CMOS inverter: V out vs. V in V DD = 1.0 V V TN = − V TP = 0.15 V I D V in = 1.0 V in = 0 V in = 0.8 V in = 0.2 V in = 0.6 V in = 0.4 V in = 0.4 V in = 0.6 4 3 V in = 0.8 V in = 0.2 2 5 V in = 0 V in = 1.0 V out 6 1 V DD Lundstrom EE-612 F06 28

  29. CMOS VTC V out NMOS OFF PMOS LIN V DD NMOS SAT V DD PMOS LIN 1 2 3 S B NMOS SAT D PMOS SAT V OUT V DD 2 V IN D NMOS LIN PMOS SAT NMOS LIN 4 PMOS OFF S B 5 6 V T V DD 2 V DD V in Lundstrom EE-612 F06 29

  30. CMOS inverter: current V out I D NMOS OFF PMOS LIN NMOS SAT V DD PMOS LIN cross-over current NMOS SAT PMOS SAT V DD 2 NMOS LIN PMOS SAT NMOS LIN PMOS OFF V T V DD 2 V DD V T V DD 2 V DD V in V in Lundstrom EE-612 F06 30

  31. CMOS inverter: noise margins V out V DD slope = -1 V DD S B NM L D V OUT V DD 2 V IN D NM H S B slope = -1 V in V DD Lundstrom EE-612 F06 31

  32. importance of gain V out dV out ( ) r ( ) V DD = A υ = − g mn + g mp on || r op dV in V DD 2 must have gain to A υ = 1 have noise margins V in V DD Lundstrom EE-612 F06 32

  33. approximate noise margins V out NM L V DD dV out ( ) r ( ) = A υ = − g mn + g mp on || r op dV in V DD 2   NM L ≈ NM H ≈ V DD 1 − 1   2  A υ  V in V DD V DD 2 Lundstrom EE-612 F06 33

  34. CMOS inverter: summary ‘pull up’ 1) little current flow (power dissipation) transistor V DD unless switching S B 2) good noise margins if device has high R OUT (high gain) D V OUT V IN D next: understand speed and power S B ‘pull down’ transistor Lundstrom EE-612 F06 34

  35. Outline 1) Review 2) CMOS circuits 3) The CMOS inverter 4) Speed Lundstrom EE-612 F06 35

  36. CMOS inverter input voltage ( ) V in t V DD V DD S B t 0 t D V OUT V IN output voltage ( ) V out t + D ( ) V DD V DD − C t − t 0 - S B ~ e − t / τ t 1 t 0 t Lundstrom EE-612 F06 36

  37. discharging time ( ) quasi-static assumption I D t simplified I D - V DS I N + ( ) t 1 D I N on ( ) t 0 C TOT V out t - V IN S B V DSAT V DS ( ) dV out t τ = R CH C TOT R CH = V DSAT / I N (on) I d ( t ) = − C TOT dt ( ) = V out ( t 1 ) e − t / τ ( ) = V DD − I N (on) V out t ( ) t − t 0 V out t C T t 0 < t < t 1 t 0 < t < t 1 Lundstrom EE-612 F06 37

  38. propagation delay (H-L) ( ) I D t output voltage ( ) V out t + D ( ) C TOT ( ) V out t V DD V DD − C t − t 0 - V IN V DD / 2 S B ~ e − t / τ t 1 t 0 t τ n τ n = C TOT V DD ( ) = V DD − I N (on) ( ) 2 I N (on) ≡ R swn C TOT t − t 0 t 0 < t < t 1 V out t C T V DD / 2 = V DD − I N (on) τ n V DD k n = 1 R swn = k n C TOT I N (on) 2 Lundstrom EE-612 F06 38

  39. loaded propagation delay ( ) R swn + R swp τ = τ n + τ p V DD = C TOT 2 2 C in C out C wire C in V IN C in C TOT C TOT = C out + C L + FO × C in interconnect C Lundstrom EE-612 F06 39

  40. use of buffers V DD ( ) τ = R sw C out + C L V IN Can we do better? C TOT >> C in Lundstrom EE-612 F06 40

  41. delay with buffers ( ) τ = R sw C out + C L V DD τ buf = τ 1 + τ 2 ( ) τ 1 = R sw C out + kC in 2 W P kW P τ 2 = R sw ( ) kC out + C L k V IN C TOT >> C in kW N W N Lundstrom EE-612 F06 41

  42. delay with buffers (ii) ) + R sw ( ) ( ( ) τ = R sw C out + C L τ buf = R sw C out + kC in kC out + C L k τ buf = τ 1 + τ 2 τ buf = R sw 2 C out + kC in + C L     ( )   τ 1 = R sw C out + kC in 2 k τ 2 = R sw ( ) d τ buf kC out + C L C L = 0 ⇒ k min = k dk C in ( ) τ buf (min) = R sw 2 C out + 2 C in C L C L >> C in , C out For very heavy loads, use multi-stage buffers. See Taur and Ning, HW probs. 5.7 - 5.10 τ buf τ = 2 C in / C L << 1 Lundstrom EE-612 F06 42

  43. delay vs. load C ( ) R swn + R swp ( ) τ = C TOT = R sw C out + FO × C in + C wire 2 FO = 3 FO = 2 FO = 1 τ see Fig. 5.29 Taur and Ning ( ) τ int = R sw C out + C in C wire Lundstrom EE-612 F06 43

  44. C in and C out C OV C OV V D 0 n+ n+ p-Si [ ] [ ] C in = C G + C OV + C OV N + C G + C OV + C OV P C GN = C OX W N L [ ] [ ] C out = C J + C OV N + C J + C OV P Lundstrom EE-612 F06 44

  45. Miller C C OV C OV - + V D 0 n+ n+ p-Si capacitors connected between input and output require a special treatment Lundstrom EE-612 F06 45

  46. Outline 1) Review 2) CMOS cirsuits 3) The CMOS inverter 4) Speed to be continued…… Lundstrom EE-612 F06 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend