standard cell layout regularity and pin access
play

Standard Cell Layout Regularity and Pin Access Optimization - PowerPoint PPT Presentation

Standard Cell Layout Regularity and Pin Access Optimization Considering Middle-of-Line Wei Ye 1 Bei Yu 1 Yong-Chan Ban 2 Lars Liebmann 3 David Z. Pan 1 1 ECE Department, University of Texas at Austin, Austin, TX, USA 2 System IC R&D Lab, LG


  1. Standard Cell Layout Regularity and Pin Access Optimization Considering Middle-of-Line Wei Ye 1 Bei Yu 1 Yong-Chan Ban 2 Lars Liebmann 3 David Z. Pan 1 1 ECE Department, University of Texas at Austin, Austin, TX, USA 2 System IC R&D Lab, LG Electronics, Seoul, South Korea 3 IBM Corporation, Hopewell Junction, NY, USA May 19, 2015 1 / 35

  2. Outline Introduction and Problem Formulation Algorithms Experimental Results Conclusion and Future Work 2 / 35

  3. Moore’s Law to Extreme Scaling 3 / 35

  4. Lithography Status & Challenges Dispearance 4 / 35

  5. Lithography Status & Challenges 10 [Courtesy Intel] Dispearance 1 um 0.1 X 1980 1990 2000 2010 2020 4 / 35

  6. Transistors Patterning Interconnect Complexity [Courtesy ARM] Planar CMOS LE AI / Cu / W wires 2005 2010 2015 2020 2025 5 / 35

  7. Transistors Patterning Interconnect Complexity [Courtesy ARM] LELE FinFET W LI Planar CMOS LE AI / Cu / W wires 2005 2010 2015 2020 2025 5 / 35

  8. M1 V0 V0 Transistors CA Patterning CB Interconnect TS Complexity [Courtesy ARM] Poly LELE RSD gate oxide FinFET active W LI Planar CMOS LE AI / Cu / W wires 2005 2010 2015 2020 2025 5 / 35

  9. Transistors Patterning Interconnect Complexity [Courtesy ARM] LELE FinFET W LI Planar CMOS LE 10 nm 7 nm 5 nm 3 nm AI / Cu / W wires 2005 2010 2015 2020 2025 5 / 35

  10. Opto Connect eNVM EUV DSA Transistors EUV LELE CNT 3D IC VNW Graphene Patterning SAQP EUV EBL Interconnect SADP HNW Complexity [Courtesy ARM] LELELE LELE EUV FinFET W LI Cu Doping Planar CMOS LE 10 nm 7 nm 5 nm 3 nm AI / Cu / W wires 2005 2010 2015 2020 2025 5 / 35

  11. Opto Connect eNVM EUV DSA Transistors EUV LELE CNT 3D IC VNW Graphene Patterning SAQP EUV EBL Interconnect SADP HNW Complexity [Courtesy ARM] LELELE LELE EUV FinFET W LI Cu Doping Planar CMOS LE 10 nm 7 nm 5 nm 3 nm AI / Cu / W wires 2005 2010 2015 2020 2025 5 / 35

  12. Solution: Layout Regularity ◮ Extreme lithography friendly ◮ Example: NAND cell [Liebmann et al. SPIE’13] ◮ How about the coming 10nm or even 7nm ? (a) 90nm (b) 22nm 6 / 35

  13. More about Middle-Of-Line (MOL) M1 ◮ Local Interconnect (LI) or Intermediate Metallization (IM) V0 V0 ◮ 2 layers: CA (drain ↔ source), CB (via0 ↔ polys) CA CB ◮ Improve intra-cell routability ◮ Regular; SADP friendly [Luk-Pat et al, SPIE’13] TS Poly RSD gate oxide active New standard cell structure is required P tracks Poly M tracks Metal-1 Metal-2 N tracks CA CB 7 / 35

  14. Pin Access Challenge ◮ Challenge in advanced tech nodes [Taghavi et al. ICCAD’10] ◮ Local detailed routing congestion ◮ Involve in standard cell design [Xu et al. ISPD’14] ◮ Both length & alignment of pins impact! Cell C1 Cell C2 8 / 35

  15. Pin Access Challenge ◮ Challenge in advanced tech nodes [Taghavi et al. ICCAD’10] ◮ Local detailed routing congestion ◮ Involve in standard cell design [Xu et al. ISPD’14] ◮ Both length & alignment of pins impact! Cell C1 Cell C2 M2 Access Direction ◮ e.g.: C2 has better Pin Accessibility than C1 8 / 35

  16. Pin Access Value p ( i , j ) = h i + h j − α · o ( i , j ) ◮ h i : track# of pin i ◮ o ( i , j ) : overlapping track# between pins i and j If α = 0 . 6 , then: Metal-2 wire ◮ p ( a , c ) = 3 . 8 a Metal-1 pin ◮ p ( a , d ) = 5 Routing track ◮ p ( c , d ) = 4 b e ◮ p ( a , b ) = 5 . 8 c d ◮ p ( b , d ) = 6 Total pin access value for whole standard cell: m m � � PA = p ( i , j ) i = 1 j > i 9 / 35

  17. How Accurate of Pin Access Value ? ◮ Pin access combination#: through expensive branch-and-bound search ◮ Pin access value: our simple model ◮ Good fidelity ! 10 / 35

  18. URPAO Problem ◮ Unidirectional Routing with Pin Access Optimization (URPAO) P tracks M tracks Poly Metal-1 Metal-2 N tracks CA CB Problem Formulation Input: original standard cell; design related parameters Output: unidirectional (regular) cell layout w. MOL and SADP friendly Objective: minimize the cell wirelength, and maximize the pin access value 11 / 35

  19. More than Layout Migration ◮ ILP based [Fang et al. ASPDAC’04] ◮ LP based [Heng et al. ISPD’97][Salodkar et al. DAC’13] ◮ Longest-Path based [Tang et al. ICCAD’05] (a) (b) 12 / 35

  20. More than Layout Migration ◮ ILP based [Fang et al. ASPDAC’04] ◮ LP based [Heng et al. ISPD’97][Salodkar et al. DAC’13] ◮ Longest-Path based [Tang et al. ICCAD’05] (a) (b) Our work is FIRST cell synthesis for ◮ MOL, Regularity, Pin Access, SADP. 12 / 35

  21. Overall Flow Input 2D Cell Layout Design Rules Dummy Column Insertion Grid Graph Construction ILP Based Cell Routing Cell Routing Fast Cell Routing Output 1D Cell Layout 13 / 35

  22. Dummy Column Insertion ◮ Some cross-couple gate connection structures ◮ Insert a dummy poly column to avoid illegal structure 14 / 35

  23. Grid Graph Construction ◮ 3 routing areas: P tracks, M tracks, N tracks. ◮ 3 terminal types: P-terminals, M-terminals, N-terminals P tracks M tracks N tracks I/O pin net Power/Ground net Intra-cell net Poly column Grid center 15 / 35

  24. Net Topo Enumeration Example ◮ A net with 2 P-terminals and 1 N terminal ◮ Three possible routes for the net (assuming only one P , N, M track) 16 / 35

  25. Overall Flow – ILP Based Cell Routing Input 2D Cell Layout Design Rules Dummy Column Insertion Grid Graph Construction ILP Based Cell Routing Cell Routing Fast Cell Routing Output 1D Cell Layout 17 / 35

  26. ILP Based Cell Routing ◮ Binary x p i = 1 ↔ net i selects route topology r p i j ∈ R j p p , q i , j · x p i · x q ◮ Metric 1: Pin Access PA = � � � r p r q p i , p j ∈ N i ∈ R i j i ∈ R i w p i · x p ◮ Metric 2: Wire-Length WL = � � r p n i ∈ N i 18 / 35

  27. ILP Based Cell Routing ◮ Binary x p i = 1 ↔ net i selects route topology r p i j ∈ R j p p , q i , j · x p i · x q ◮ Metric 1: Pin Access PA = � � � r p r q p i , p j ∈ N i ∈ R i j i ∈ R i w p i · x p ◮ Metric 2: Wire-Length WL = � � r p n i ∈ N i Mathematical Formulation β · PA − WL max � x p s.t. i = 1 ∀ n i ∈ N r p i ∈ R i x p ∀ r p i ∈ { 0 , 1 } i ∈ R i , ∀ n i ∈ N x p i + x q if r p i , r q j ≤ 1 , j conflict 18 / 35

  28. ILP Based Cell Routing (cont.) ◮ PA is NOT linear expression due to x p i · x q j ◮ new variable x p , q i , j to replace x p i · x q j ◮ additional constraints: x p , q i , j ≥ x p i + x q  j − 1  x p , q i , j ≤ x p i , x p , q i , j ≤ x q j x p , q i , j ∈ { 0 , 1 }  19 / 35

  29. ILP Based Cell Routing (cont.) ◮ PA is NOT linear expression due to x p i · x q j ◮ new variable x p , q i , j to replace x p i · x q j ◮ additional constraints: x p , q i , j ≥ x p i + x q  j − 1  x p , q i , j ≤ x p i , x p , q i , j ≤ x q j x p , q i , j ∈ { 0 , 1 }  ◮ Transform to 0-1 ILP Formulation ◮ Optimal but suffers from runtime overhead 19 / 35

  30. Overall Flow – Fast Cell Routing Input 2D Cell Layout Design Rules Dummy Column Insertion Grid Graph Construction ILP Based Cell Routing Cell Routing Fast Cell Routing Output 1D Cell Layout 20 / 35

  31. Step 1: M Track Assignment ◮ Limited M-track resouce ◮ Block points: poly grids blocked due to connection of Metal-2 wires ◮ net i ∈ BLK ( j ) , if will add block on column j ◮ otherwise, i ∈ NET ( j ) 21 / 35

  32. Step 1: M Track Assignment (cont.) LP Formulation � b i · x i max i � s.t. x i ≤ T m − | BLK ( j ) | ∀ column j i ∈ NET ( j ) ◮ b i : benefit to assign net i into M-track I/O Pins Routing track 22 / 35

  33. Step 2: P/N Track Assignment 2-SAT Formulation FALSE = ¬ x i · x j ⇐ ⇒ TRUE = x i + ¬ x j ◮ Optimally solved through strongly connected component ◮ Linear runtime I/O Pins 23 / 35

  34. Step 3: I/O Pin Extension m � ( l 0 i − l i ) + ( r i − r 0 i ) max i = 1 s.t. c L ≤ l i ≤ l 0 ∀ w i ∈ PW i r 0 i ≤ r i ≤ c R ∀ w i ∈ PW r i − l i ≥ l 0 ∀ w i ∈ PW l j − r i ≥ l 1 ∀ w i , w j ∈ same track ◮ LP formulation, Unimodular ◮ Dual to Min-Cost Flow 24 / 35

  35. Step 4: Finish All Connections ◮ Vertical connections through CA ◮ Insert poly 25 / 35

  36. Experimental Setup Parameters p ( i , j ) = h i + h j − α · o ( i , j ) α = 0 . 6 ⇒ β = 0 . 02 max β · PA − WL ⇒ ◮ C++; Linux machine with 3.3GHz CPU ◮ Input: Nangate 45nm standard cell library ◮ Target at 10nm technology node with SADP process. ◮ ILP/LP Solver: GUROBI 26 / 35

  37. Results – Case 1 ◮ Input CLKGATE X1 27 / 35

  38. Results – Case 1 ◮ Input CLKGATE X1 ◮ Output [Fast Routing] (a) 9-track (b) 10-track 27 / 35

  39. Results – Case 2 ◮ Input SDFFRS 28 / 35

  40. Results – Case 2 ◮ Input SDFFRS ◮ Output [Fast Routing] (a) 9-track (b) 10-track 28 / 35

  41. Results – 9 V.S. 10 Tracks On Wire-Length (WL) [ILP Routing] (a) Total WL (b) M-2 WL ◮ Similar total WL ◮ Different on M-2 WL → impact routing resource 29 / 35

  42. Results – 9 V.S. 10 Tracks (cont.) On Pin Access Value (PA) [ILP Routing] ◮ 10-track introduces 8% pin-access value against 9-track ◮ Trade-off: cell height v.s. pin accessibility 30 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend