5 introduction to cmos digital gates
play

5. Introduction to CMOS Digital Gates Lecture notes: Sec. 4 Sedra - PowerPoint PPT Presentation

5. Introduction to CMOS Digital Gates Lecture notes: Sec. 4 Sedra & Smith (6 th Ed): Sec. 5.1-5.3 Sedra & Smith (5 th Ed): Sec. 4.1-4.3 ECE 65, Winter2013, F. Najmabadi Complementary MOS (CMOS) is based on NMOS/PMOS pairs NMOS Inverter


  1. 5. Introduction to CMOS Digital Gates Lecture notes: Sec. 4 Sedra & Smith (6 th Ed): Sec. 5.1-5.3 Sedra & Smith (5 th Ed): Sec. 4.1-4.3 ECE 65, Winter2013, F. Najmabadi

  2. Complementary MOS (CMOS) is based on NMOS/PMOS pairs NMOS Inverter CMOS Inverter  Replace R D with a PMOS  “Effective” R D seen by Q1 is controlled by v i : o “ Infinite” R D when Q1 is ON o “Very small” R D when Q1 is OFF  Maximum signal swing: Low State: 0, High State: V DD o Independent of MOS device parameters! o Wide noise margin.  Zero “static” power dissipation ( i D = 0 in each state).  Higher speed compare to a “RTL-type” NMOS inverter F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (2/11)

  3. Analysis of CMOS Inverter (1) − = GS1 KVL : v v GS 1 i − = + → = − GS2 KVL : V v v v V v DD SG 2 i SG 2 DD i − = + DS1 & 2 KVL : V v v DD SD 2 DS 1 = i i D 1 D 2 = = − v v V v o DS 1 DD SD 2 Case 1: v i = 0 = = = = < < → → → → = = v v v v 0 0 V V Q1 Q1 OFF OFF i i 0 0 GS GS 1 1 i i tn tn D D 1 1 ↓ ↓ KCL = = − − = = > > → → = v v V V v v V V |V |V | | Q2 Q2 ON ON i 0 SG SG 2 2 DD DD i i DD DD tp tp D 2 ? F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (3/11)

  4. A MOS is ON and i D = 0 only if MOS is in triode and v DS = 0 MOS ON: V OV > 0 W = µ = → = 2  MOS in saturation: incorrect! i 0 . 5 C V 0 V 0 D n ox OV OV L [ ] W = µ − = → = 2  MOS in triode: i 0 . 5 C 2 V v v 0 v 0 D n ox OV DS DS DS L When is i D = 0 ?  MOS is OFF ( V OV < 0) o No channel is formed, no i D can flow  MOS is ON ( V OV > 0) o A channel is formed, and i D can flow but i D = 0 because no voltage is applied to drive i D ( v DS = 0) ! F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (4/11)

  5. Analysis of CMOS Inverter (2) − = GS1 KVL : v v GS 1 i − = + → = − GS2 KVL : V v v v V v DD SG 2 i SG 2 DD i − = + DS1 & 2 KVL : V v v DD SD 2 DS 1 = i i D 1 D 2 = = − v v V v o DS 1 DD SD 2 Case 1: v i = 0 = = = = < < → → → → = = = v v v v 0 0 V V Q1 Q1 OFF OFF i i 0 0 v V GS GS 1 1 i i tn tn D D 1 1 DS 1 DD ↓ ↓ ↑ = = − − = = > > → → = = → = v v V V v v V V | | V V | | Q2 Q2 ON ON i i 0 0 Q2 in Triode & v 0 SG SG 2 2 DD DD i i DD DD tp tp D D 2 2 SD 2  For v i = V DD , v o = v DS1 = 0 ( i D1 = 0, i D2 = 0 )  Gate remains in this state as long as v i > V DD − | V tp | (Q2 OFF) F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (5/11)

  6. Analysis of CMOS Inverter (3) − = GS1 KVL : v v GS 1 i − = + → = − GS2 KVL : V v v v V v DD SG 2 i SG 2 DD i − = + DS1 & 2 KVL : V v v DD SD 2 DS 1 = i i D 1 D 2 = = − v v V v o DS 1 DD SD 2 Case 2: v i = V DD = = = = = = > > > → → → = = → = v v v v v v V V V V V V Q1 Q1 Q1 ON ON ON i i 0 0 Q1 in Triode & v 0 GS GS GS 1 1 1 i i i DD DD DD tn tn tn D D 1 1 DS 1 ↑ ↑ ↑ ↓ = = = − − − = = = < < < → → → → → → = = = = v v v V V V v v v 0 0 0 | | | V V V | | | Q2 Q2 Q2 OFF OFF OFF i i i 0 0 0 v V SG SG SG 2 2 2 DD DD DD i i i tp tp tp D D D 2 2 2 SD 2 DD  For v i = V DD , v o = v DS1 = 0 ( i D1 = 0, i D2 = 0 )  Gate remains in this state as long as v i > V DD − | V tp | (Q2 OFF) F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (6/11)

  7. Transfer function of a CMOS inverter  Transfer function is “symmetric” for matched transistors: V tn =| V tp | & µ n ( W/L ) n = µ p ( W/L ) p  During transition from one state to another, i D > 0 F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (7/11)

  8. CMOS NAND Gate Truth Table v 1 = 0 v 2 = 0: v o = V DD v 1 = 0 v 2 = V DD : v o = V DD v 1 = V DD v 2 = 0 : v o = V DD v 1 = V DD v 2 = V DD : v o = 0 F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (8/11)

  9. Analysis of CMOS NAND Gate (1) v GS = v GS4-KVL GS1-KVL: 1 1 GS3-KVL = + v v v GS2-KVL: 2 GS 2 DS 1 → = − v v v GS 2 2 DS 1 = + V v v GS3-KVL: DD SG 3 1 → = − v V v SG 3 DD 1 = + V v v GS4-KVL: DD SG 4 2 → = − GS2-KVL v V v SG 4 DD 2 = + + V v v v DS-KVL: DD SD 4 DS 2 DS 1 = v v SD 3 SD 4 = + = = + v v v i i i i KCL: o DS 1 DS 2 D 1 D 2 D 3 D 4 = − = − v V v V v o DD SD 4 DD SD 3 F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (9/11)

  10. Analysis of CMOS NAND Gate (2) = − = − = + v V v V v v v o DD SD 4 DD SD 3 DS 1 DS 2 = = + i i i i D 1 D 2 D 3 D 4 Case 1: v 1 = 0 & v 2 = 0 = = = = = = < < < → → → → → → = = = v v v v v v 0 0 0 V V V Q1 Q1 Q1 OFF OFF OFF i i i 0 0 0 GS GS GS 1 1 1 1 1 1 tn tn tn D D D 1 1 1 = = = − − − = = = − − − → → → = = v v v v v v v v v v v v Q2 Q2 Q2 ? ? ? i i 0 0 GS GS GS 2 2 2 2 2 2 DS DS DS 1 1 1 DS DS DS 1 1 1 D D 2 2 = = = − − − = = = > > > → → → = = → = v v v V V V v v v V V V | | | V V V | | | Q3 Q3 Q3 ON ON ON i i 0 0 Q3 in Triode & v 0 SG SG SG 3 3 3 DD DD DD 1 1 1 DD DD DD tp tp tp D D 3 3 SD 3 = = = − − − = = = > > > → → → = = → = v v v V V V v v v V V V | | | V V V | | | Q4 Q4 Q4 ON ON ON i i 0 0 Q4 in Triode & v 0 SG SG SG 4 4 4 DD DD DD 2 2 2 DD DD DD tp tp tp D D 4 4 SD 4 = − = v V v V o DD SD 4 DD  For v 1 = 0 & v 2 = 0, v o = V DD ( i D1 = i D2 = i D3 = i D4 = 0) Note: Since v DS1 ≥ 0, we can say v GS2 = v DS1 < V tn and Q2 is OFF! F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (10/11)

  11. Analysis of CMOS NAND Gate (3) = − = − = + v V v V v v v o DD SD 4 DD SD 3 DS 1 DS 2 = = + i i i i D 1 D 2 D 3 D 4 Case 2: v 1 = V DD & v 2 = 0 = = = = = = > > > → → → = = → = v v v v v v V V V V V V Q1 Q1 Q1 ON ON ON i i 0 0 Q1 in Triode & v 0 GS GS GS 1 1 1 1 1 1 DD DD DD tn tn tn D D 1 1 DS 1 = = = − − − = = = − − − < < < → → → → → → = = = v v v v v v v v v v v v V V V Q2 Q2 Q2 OFF OFF OFF i i i 0 0 0 GS GS GS 2 2 2 2 2 2 DS DS DS 1 1 1 DS DS DS 1 1 1 tn tn tn D D D 2 2 2 = = = − − − = = = < < < → → → → → → = = = v v v V V V v v v 0 0 0 | | | V V V | | | Q3 Q3 Q3 OFF OFF OFF i i i 0 0 0 SG SG SG 3 3 3 DD DD DD 1 1 1 tp tp tp D D D 3 3 3 = = = − − − = = = > > > → → → = = → = v v v V V V v v v V V V | | | V V V | | | Q4 Q4 Q4 ON ON ON i i 0 0 Q4 in Triode & v 0 SG SG SG 4 4 4 DD DD DD 2 2 2 DD DD DD tp tp tp D D 4 4 SD 4 = − = v V v V o DD SD 4 DD  For v 1 = V DD & v 2 = 0, v o = V DD ( i D1 = i D2 = i D3 = i D4 = 0) Exercise: Complete the analysis of the truth table of this NAND gate F. Najmabadi, ECE65, Winter 2013, Intro to CMOS (11/11)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend