towards sub 10 nm diameter i ngaas vertical nanowire
play

Towards Sub-10 nm Diameter I nGaAs Vertical Nanowire MOSFETs and - PowerPoint PPT Presentation

Towards Sub-10 nm Diameter I nGaAs Vertical Nanowire MOSFETs and TFETs J. A. del Alamo, X. Zhao, W. Lu, and A. Vardi Microsystems Technology Laboratories Massachusetts Institute of Technology 5 th Berkeley Symposium on Energy Efficient


  1. Towards Sub-10 nm Diameter I nGaAs Vertical Nanowire MOSFETs and TFETs J. A. del Alamo, X. Zhao, W. Lu, and A. Vardi Microsystems Technology Laboratories Massachusetts Institute of Technology 5 th Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop Berkeley, CA, October 19-20, 2017 Acknowledgements: • Students and collaborators: D. Antoniadis, E. Fitzgerald, E. Yablonovitch • Sponsors: DTRA, KIST, Lam Research, Samsung, SRC • Labs at MIT: MTL, EBL

  2. Vertical Nanowire MOSFETs: the ultimate scalable transistor 2

  3. Vertical nanowire MOSFET: ultimate scalable transistor L c L spacer L g Vertical NW MOSFET:  uncouples footprint scaling from L g , L spacer , and L c scaling 3

  4. I nGaAs Vertical Nanowires on Si by direct growth Au seed InAs NWs on Si by SAE Riel, MRS Bull 2014 Vapor-Solid-Liquid Selective-Area Epitaxy (SAE) (VLS) Technique Riel, IEDM 2012 4

  5. I nGaAs VNW-MOSFETs by top-down approach @ MI T Starting heterostructure: n + InGaAs, 70 nm i InGaAs, 80 nm n + InGaAs, 300 nm n + : 6 × 10 19 cm -3 Si doping Top-down approach: flexible and manufacturable 5

  6. I nGaAs Vertical Nanowires @ MI T Key enabling technologies: • RIE = BCl 3 /SiCl 4 /Ar chemistry • Digital Etch (DE) = self-limiting O 2 plasma oxidation + H 2 SO 4 or HCl oxide removal RIE + 5 cycles DE • Radial etch rate=1 nm/cycle • Sub-20 nm NW diameter • Aspect ratio > 10 • Smooth sidewalls Zhao, IEDM 2013 Zhao, EDL 2014 Zhao, IEDM 2014 6

  7. I I I -V VNW MOSFET/ TFET process flow 7

  8. NW-MOSFET I -V characteristics: D= 40 nm V gs =-0.2 V to 0.7 V in 0.1 V step 300 g m,pk =720 μ S/ μ m 800 250 700 V d = 0.5 V 200 600 I s (µ A/ µ m) g m ( µ S/ µ m ) 500 150 400 100 300 200 50 100 0 0 0.0 0.1 0.2 0.3 0.4 0.5 -0.2 0.0 0.2 0.4 0.6 V ds (V) V gs (V) -3 10 V ds =0.5 V -4 10 -5 10 Single nanowire MOSFET: V ds =0.05 V I s ( A/ µ m ) -6 10 • L ch = 80 nm -7 10 S lin = 70 mV/dec • 3 nm Al 2 O 3 (EOT = 1.5 nm) -8 10 S sat = 80 mV/dec -9 DIBL = 88 mV/V 10 Zhao, CSW 2017 -10 10 -0.2 0.0 0.2 0.4 0.6 V gs (V) 8

  9. Benchmark with Si/ Ge VNW MOSFETs Peak g m of InGaAs (V DS =0.5 V), Si and Ge VNW MOSFETs 1400 Si/Ge 1200 InGaAs g m,pk ( µ S/ µ m) 1000 800 1.2 V 600 Our work (V DS =0.5 V) 400 1.2 V 1 200 1 V 1 V 1V 0 0 20 40 60 80 100 Target Diameter (nm) • InGaAs competitive with Si • Need to demonstrate VNW MOSFETs with D<10 nm 9

  10. I nGaAs VNW Mechanical Stability for D< 10 nm 8 nm InGaAs VNWs after 7 DE cycles: 8 nm InGaAs VNWs: Yield = 0% Broken NW Difficult to reach 10 nm VNW diameter due to breakage 10

  11. I nGaAs VNW Mechanical Stability for D< 10 nm Difficult to reach 10 nm VNW diameter due to breakage 8 nm InGaAs VNWs: Yield = 0% Water-based acid is problem: Broken NW Surface tension (mN/m): • Water: 72 • Methanol: 22 • IPA: 23 Solution: alcohol-based digital etch 11

  12. Alcohol-Based Digital Etch Lu, EDL 2017 8 nm InGaAs VNWs after 7 DE cycles: 10% HCl in IPA 10% HCl in DI water Yield = 97% Yield = 0% Broken NW Radial etch rate: 1.0 nm/cycle Radial etch rate: 1.0 nm/cycle Alcohol-based DE enables D < 10 nm 12

  13. D= 5.5 nm VNW arrays 10% H 2 SO 4 in methanol 90% yield • H 2 SO 4 :methanol yields 90% at D=6 nm! • Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP) 13

  14. I nGaAs Digital Etch First demonstration of D=5 nm diameter InGaAs VNW (Aspect Ratio > 40) 14

  15. Latest! D= 15 nm I nGaAs VNW MOSFET 200 V gs = 0 V to 0.6 V in 0.1 V step R on = 5500 Ω ⋅ µ m Mo contact 150 D = 15 nm I d (µ A/ µ m) o C N 2 RTA 300 100 50 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) Single nanowire MOSFET: • L ch = 80 nm • 2.5 nm Al 2 O 3 (EOT = 1.3 nm) Zhao, IEDM 2017 15

  16. Benchmark with Si/ Ge VNW MOSFETs Peak g m of InGaAs (V DS =0.5 V), Si and Ge VNW MOSFETs Our latest work (V DS =0.5 V) Even better results at IEDM 2017! Target Most aggressively scaled VNW MOSFET ever 16

  17. I nGaAs/ I nAs heterojunction VNW TFETs @ MI T Top-down approach: flexible and manufacturable 17

  18. Gen-2 I nGaAs VNW-TFET Single NW: D= 40 nm, L ch = 60 nm, 3 nm Al 2 O 3 (EOT = 1.5 nm) New step: final RTA → 10 fold reduction in D it V gs = 0 V to 0.6 V in 0.1 V step 2.0 0 10 V gs =0 V to 0.6 V in 0.1 V step -1 10 1.5 -2 10 I d (µ A/ µ m) I d (µ A/ µ m) 1.0 -3 10 -4 10 0.5 -5 10 -6 0.0 10 -0.4 -0.2 0.0 0.2 0.4 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) V ds (V) • Saturated output characteristics • Clear negative differential resistance • Peak to valley ratio of 3.4 @ V gs = 0.6 V Zhao, EDL 2017 18

  19. NW-TFET subthreshold characteristics -5 150 10 V d =0.3 V T=300 K 140 -6 10 130 120 -7 10 S (mV/dec) I d ( A/ µ m ) V d =0.05 V 110 -8 10 100 90 -9 10 80 V d = 0.05 V -10 10 70 V d = 0.3 V 60 -11 10 50 -11 -10 -9 -8 -7 -6 0.0 0.1 0.2 0.3 0.4 0.5 10 10 10 10 10 10 I d (A/ µ m) V gs (V) • Sub-thermal for 2 orders of magnitude of current • S lin = 55 mV/dec • S sat = 53 mV/dec Zhao, EDL 2017 19

  20. Random Telegraph noise (RTN) in TFETs V ds = 50 mV -2 10 3n Welch V gs = 0.24 V 1/f2 2n 1/f 2n -1 ) I d ( A ) d ( Hz 2n -3 V ds =0.3 V 10 -5 10 2 2n SI d /I Jump -6 10 2n -7 1n 10 I d ( A/ µ m ) V ds =0.05 V -4 10 1n -8 10 S lin = 61 mV/dec 1n -9 0 1 10 0 10 20 30 40 10 10 S sat = 66 mV/dec f [Hz] Time [S] -10 10 V ds = 50 mV -11 -2 10 900p 10 Welch V gs = 0.18 V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 1/f2 V gs (V) 800p 1/f 700p -1 ) I d ( A ) d ( Hz -3 10 600p 2 SI d /I 500p 400p -4 10 300p 0 10 20 30 40 0 1 10 10 Time [S] f [Hz] • RTN consistent with jump in subthreshold current • Single-trap behavior visible 20

  21. Conclusions • Improved InGaAs etching technology: sub-10 nm nanowires with very high aspect ratio and high yield • InGaAs VNW MOSFETs with record characteristics • InGaAs VNW TFETs with subthermal behavior over 2 orders of magnitude of I D • Exciting new results to be presented at IEDM 2017 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend