sub 10 nm diameter ingaas vertical nanowire mosfets
play

Sub-10 nm Diameter InGaAs Vertical Nanowire MOSFETs X. Zhao, C. - PowerPoint PPT Presentation

Sub-10 nm Diameter InGaAs Vertical Nanowire MOSFETs X. Zhao, C. Heidelberger, E. A. Fitzgerald, W. Lu, A. Vardi, and J. A. del Alamo Microsystems Technology Laboratories, Massachusetts Institute of Technology Outline Motivation Process


  1. Sub-10 nm Diameter InGaAs Vertical Nanowire MOSFETs X. Zhao, C. Heidelberger, E. A. Fitzgerald, W. Lu, A. Vardi, and J. A. del Alamo Microsystems Technology Laboratories, Massachusetts Institute of Technology

  2. Outline  Motivation  Process technology  Device electrical characteristics  Conclusions 2

  3. Vertical NW MOSFETs: ultimate scalable transistor L c L g L g L c Vertical NW MOSFET:  uncouples footprint scaling from L g , L spacer , and L c scaling 3

  4. State-of-the-art VNW MOSFETs: Si/Ge Peak g m of Si and Ge VNW MOSFETs (V ds = 1-1.2 V ) 1400 Si/Ge (1-1.2 V) * Normalization 1200 by the total circumference g m,pk ( µ S/ µ m) 1000 800 600 400 200 0 0 20 40 60 80 100 Diameter (nm) • D = 18 nm devices demonstrated 4

  5. State-of-the-art VNW MOSFETs: InGaAs Peak g m of InGaAs (V DS =0.5 V), Si and Ge VNW MOSFETs 1400 Si/Ge (1-1.2 V) 1200 InGaAs (0.5 V) g m,pk ( µ S/ µ m) 1000 800 600 400 200 0 0 20 40 60 80 100 Diameter (nm) • InGaAs competitive with Si 5

  6. State-of-the-art VNW MOSFETs: InGaAs Peak g m of InGaAs (V DS =0.5 V), Si and Ge VNW MOSFETs Target: D = 7 nm (Yakimets TED 2015) 1400 Si/Ge (1-1.2 V) 1200 InGaAs (0.5 V) g m,pk ( µ S/ µ m) 1000 800 600 400 200 0 0 20 40 60 80 100 III-V TFET Diameter (nm) • InGaAs competitive with Si • Need to demonstrate VNW MOSFETs with D<10 nm 6

  7. III-V VNW MOSFET process flow @ MIT Sputtered W Starting substrate ALD-Al 2 O 3 n+ InGaAs i n+ Adhesion 1 st SOG HSQ layer n+ i n+ 2 nd SOG Mo/Ti/Au 7

  8. InGaAs vertical nanowires @ MIT Key enabling technologies: • RIE = BCl 3 /SiCl 4 /Ar chemistry • Digital Etch (DE) = self-limiting O 2 plasma oxidation + H 2 SO 4 or HCl oxide removal RIE + 5 cycles DE • Radial etch rate=1 nm/cycle • Sub-20 nm NW diameter • Aspect ratio > 10 • Smooth sidewalls Zhao, IEDM 2013 Zhao, EDL 2014 Zhao, IEDM 2014 8

  9. Challenge for sub-10 nm VNW: mechanical stability Lu, EDL 2017 Difficult to reach 10 nm VNW diameter due to breakage 8 nm InGaAs VNWs: Yield = 0% Water-based acid is problem: Surface tension (mN/m): Broken NW • Water: 72 • Methanol: 22 • IPA: 23 Solution: alcohol-based digital etch? 9

  10. Alcohol-Based Digital Etch 8 nm InGaAs VNWs after 7 DE cycles: Lu, EDL 2017 10% HCl in DI water 10% HCl in IPA Yield = 0% Yield = 97% Broken NW Radial etch rate: 1.0 nm/cycle Radial etch rate: 1.0 nm/cycle Alcohol-based DE enables D < 10 nm 10

  11. D=5.5 nm VNW arrays 10% H 2 SO 4 in methanol Lu, EDL 2017 90% yield • H 2 SO 4 :methanol yields 90% at D=6 nm! • Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP) 11

  12. Toward sub-10 nm InGaAs VNW MOSFETs Starting heterostructure: n+ InGaAs: 11 nm n+ InAs: 2 nm n+ In 0.7 Ga 0.3 As: 6 nm n+ InGaAs, 55 nm i InGaAs, 80 nm n+ InGaAs, 300 nm D = 40, 30, 18, 15, 11, 7 nm No. of wires = 1 L ch = 80 nm EOT = 1.25 nm New element: H 2 SO 4 :methanol DE 12

  13. D = 15 nm Mo-contacted device 500 V ds = 0.5 V -3 10 V ds =0.5 V Mo contact g m,pk = 460 µ S/ µ m D = 15 nm 400 -4 10 Mo contact o C N 2 RTA 300 D = 15 nm g m ( µ S/ µ m ) -5 10 300 o C N 2 RTA 300 V ds =0.05 V I d ( A/ µ m ) -6 10 200 -7 10 S lin = 69 mV/dec 100 -8 10 S sat = 76 mV/dec 0 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -9 DIBL = 67 mV/dec 10 V gs (V) 200 V gs = 0 V to 0.6 V in 0.1 V step -10 10 R on = 5500 Ω ⋅ µ m -0.2 0.0 0.2 0.4 0.6 V gs (V) Mo contact 150 D = 15 nm I d (µ A/ µ m) Single nanowire MOSFET: o C N 2 RTA 300 100 • D = 15 nm & L ch = 80 nm • S lin = 69 mV/dec 50 • 2.5 nm Al 2 O 3 (EOT = 1.25 nm) 0 • 300 o C N 2 RTA, 1 min 0.0 0.1 0.2 0.3 0.4 0.5 13 V ds (V)

  14. Diameter scaling of Mo devices 2000 V ds = 0.5 V 6000 * Mean values of 3 individual 1600 5000 g m,pk ( µ S/ µ m) devices R on ( Ω⋅µ m) 4000 1200 3000 800 2000 1000 400 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 D (nm) 350 D (nm) 90 I off = 100 nA/ µ m & V dd = 0.5 V V ds = 0.05 V 300 85 S lin (mV/dec) I on ( µ A/ µ m) 250 80 200 75 150 70 100 65 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 D (nm) D (nm) • Narrowest working device has D = 15 nm • R on skyrockets with D ↓ 14

  15. Challenge for sub-10 nm VNW: top contact D = 7 nm D = 30 nm D = 7 nm D = 30 nm Mo InGaAs Depletion region ? “Partially “Fully depleted” depleted” Lee IEDM 2013 Solution: alloyed contacts? 15

  16. Ni contacted D = 7 nm MOSFET -3 10 Ni contact Ni contact D = 7 nm 1800 D = 7 nm -4 10 1400 -5 g m ( µ S/ µ m ) 10 I d ( A/ µ m ) 1000 -6 10 600 -7 10 200 Before FGA V ds =0.5 V -8 10 Before FGA V ds =0.5 V -0.2 0.0 0.2 0.4 0.6 -9 10 V gs (V) 800 Ni contact -0.2 0.0 0.2 0.4 0.6 D = 7 nm 700 V gs (V) V gs = 0 V to 0.8 V in 0.1 V step 600 I d ( µ A/ µ m) 500 400 300 200 100 Before RTA 0 16 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V)

  17. Ni contacted D = 7 nm MOSFET -3 V ds =0.5 V 10 Ni contact V ds =0.5 V 1800 D = 7 nm g m,pk = 1700 µ S/ µ m -4 10 Ni contact 1400 o C FGA 200 D = 7 nm -5 g m ( µ S/ µ m ) 10 V ds =0.05 V o C FGA I d ( A/ µ m ) 200 1000 -6 10 S lin /S sat = 85/90 mV/dec 600 -7 10 DIBL = 222 mV/dec 200 Before FGA V ds =0.5 V -8 10 V ds =0.5 V -0.2 0.0 0.2 0.4 0.6 Before FGA -9 10 V gs (V) 800 V gs = 0 V to 0.8 V in 0.1 V step -0.2 0.0 0.2 0.4 0.6 R on = 1100 Ω ⋅ µ m 700 V gs (V) Single nanowire MOSFET: 600 Ni contact D = 7 nm I d (µ A/ µ m) 500 • D = 7 nm & L ch = 80 nm o C FGA 200 400 • 2.5 nm Al 2 O 3 (EOT = 1.25 nm) 300 • 200 o C FGA, 1 min 200 100 • I on = 350 μ A/ μ m @ V DD = 0.5 V & 0 I off = 100 nA/ μ m 17 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V)

  18. Output characteristics vs. D D = 7 nm D = 15 nm D = 30 nm 800 800 800 V gs = 0 V to 0.8 V in 0.1 V step V gs = 0 V to 0.8 V in 0.1 V step V gs = 0 V to 0.8 V in 0.1 V step 700 700 700 600 600 600 I d (µ A/ µ m) I d (µ A/ µ m) 500 500 I d (µ A/ µ m) 500 Ni 400 400 400 300 300 300 200 200 200 100 100 100 0 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) V ds (V) V ds (V) 800 V gs = 0 V to 0.8 V in 0.1 V step 800 800 V gs = 0 V to 0.7 V in 0.1 V step V gs = 0 V to 0.6 V in 0.1 V step 700 700 700 600 600 600 I d ( µ A/ µ m) I d (µ A/ µ m) 500 500 I d (µ A/ µ m) 500 Mo 400 400 400 300 300 300 200 200 200 100 100 100 0 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) V ds (V) V ds (V) Better current situation at D = 15 nm devices 18

  19. Diameter scaling of Ni vs Mo devices 2000 V ds = 0.5 V * Mean values 6000 of 3 individual 5000 1600 devices g m,pk ( µ S/ µ m) R on ( Ω⋅µ m) 4000 1200 Mo Ni 3000 2000 800 Mo Ni 1000 400 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 D (nm) D (nm) 350 90 I off = 100 nA/ µ m & V dd = 0.5 V V ds = 0.05 V 300 85 S lin (mV/dec) I on ( µ A/ µ m) 250 Ni 80 Ni 200 Mo 75 150 70 Mo 100 65 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 D (nm) D (nm) Excellent g m & I on scaling with D for Ni devices 19

  20. Benchmarking Persson EDL 2010 2000 Tomioka IEDM 2011 Tomioka Nature 2012 This work - Ni Persson DRC 2012 Berg IEDM 2015 1600 Kilpi VLSI 2017 Ramesh VLSI 2016, 0.4 V g m,pk ( µ S/ µ m ) Zhao IEDM 2013 1200 This work - Mo This work - Ni This work - Mo 800 400 V ds =0.5 V 0 60 110 160 210 260 S sat (mV/dec) High performance and good electrostatics 20

  21. Benchmarking Si/Ge, 1-1.2 V 2000 InGaAs Target: D = 7 nm This work - Mo This work - Ni This work - Ni 1600 g m,pk ( µ S/ µ m) 1200 800 This work - Mo 400 0 5 10 15 20 25 30 35 40 Diameter (nm) • First sub-10 nm diameter VNW transistor of any kind • Record performance 21

  22. Conclusions  First sub-10 nm diameter VNW transistors of any kind in any material system  Key technologies: alcohol based DE + Ni alloyed contact  Record performance demonstrated  Top contact: key challenge for VNW MOSFET technology 22

  23. Appendix 23

  24. Ni contact for sub-10 nm InGaAs VNW MOSFETs Starting heterostructure: n+ InGaAs: 11 nm n+ InAs: 2 nm n+ In 0.7 Ga 0.3 As: 6 nm n+ InGaAs, 55 nm i InGaAs, 80 nm n+ InGaAs, 300 nm D = 40, 30, 18, 15, 11, 7 nm No. of wires = 1 L ch = 80 nm EOT = 1.25 nm New elements: H 2 SO 4 :methanol DE + Ni alloyed contact 24

  25. Effect of RTA 1000 560 V ds = 0.5 V Ni, 30 Ni, 30 Ni, 30 Mo, 30 Mo, 30 Mo, 30 5 5x10 800 460 V ds = 0.05 V S lin (mV/dec) g m,pk ( µ S/ µ m) R on ( Ω⋅µ m) 600 360 4 5x10 400 260 3 5x10 200 160 2 0 60 5x10 No RTA 250 C 300 C 350 C No RTA 250 C 300 C 350 C No RTA 250 C 300 C 350 C T (K) T (K) T (K) 250 I off = 100 nA/ µ m Ni, 30 Mo, 30 & V dd = 0.5 V • Performance for Ni devices ↓ then 200 I on ( µ A/ µ m) ↑ with ↑ T 150 100 • Refractory metal Mo contact → 50 thermal stability 0 No RTA 250 C 300 C 350 C T (K) 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend