vertical nanowire i ngaas mosfets fabricated by a top
play

Vertical Nanowire I nGaAs MOSFETs Fabricated by a Top-down Approach - PowerPoint PPT Presentation

Vertical Nanowire I nGaAs MOSFETs Fabricated by a Top-down Approach Xin Zhao, Jianqiang Lin, Christopher Heidelberger, Eugene A. Fitzgerald and Jess A. del Alamo Microsystems Technology Laboratories, MIT December 11, 2013 Sponsors: NSF Award


  1. Vertical Nanowire I nGaAs MOSFETs Fabricated by a Top-down Approach Xin Zhao, Jianqiang Lin, Christopher Heidelberger, Eugene A. Fitzgerald and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 11, 2013 Sponsors: NSF Award #0939514 (E3S STC) Fabrication: MTL, SEBL at MIT

  2. Outline • Motivation • Device technology • Device electrical characteristics • Conclusions 2

  3. Motivation Superior electron transport properties of InGaAs material system – high mobility and electron velocity del Alamo, Nature 2011 3

  4. Gate-all-around (GAA) nanowire MOSFETs Kuhn, TED 2012 • Nanowire MOSFET provides ultimate scalability 4

  5. Vertical channel MOSFETs Vertical nanowire decouples footprint scaling and gate length scaling  high density Liu, DRC 2012 • Use of vertical FETs saves 40% of total chip area 5

  6. Bottom-up approach Impressive devices via bottom-up techniques demonstrated Complicated epitaxial growth or Au seed particles • required Tanaka, APEX 2010 Tomioka, Nature 2012 Persson, DRC 2012 • Top-down approach worth investigating! 6

  7. Goal: vertical nanowire I nGaAs MOSFETs fabricated via top-down approach Mo/Ti/Au n+ Starting heterostructure: SOG Al 2 O 3 n+ InGaAs, 70 nm W i i InGaAs, 80 nm n+ InGaAs, 300 nm n+: 6 × 10 19 Si doping n+ InGaAs Key elements: • Top-down approach based on RIE • Single nanowire MOSFETs 7

  8. Tomioka, Nature 2012 Process flow Persson, DRC 2012 Sputtered W Starting substrate ALD-Al 2 O 3 n+ InGaAs i n+ Adhesion 1 st SOG HSQ layer n+ i n+ 2 nd SOG Mo/Ti/Au 8

  9. Key enabling technology: RI E by BCl 3 / SiCl 4 / Ar Chemistry 20 nm • Sub-20 nm resolution • Aspect ratio > 10 • Smooth sidewall and surface • BCl 3 /SiCl 4 /Ar RIE chemistry used for III-V optical devices, never used for nm-scale features 9

  10. Critical parameter: Substrate temperature during RI E T ↑  etch rate ↑, surface roughness↓, sidewall verticality ↑ 10

  11. Nanowire RI E followed by digit al e et ch Lin, IEDM 2012 Digital etch: self-limiting O 2 plasma oxidation + H 2 SO 4 oxide removal • after 10 cycles before • Shrinks NW diameter by 2 nm per cycle • Unchanged shape • Reduced roughness 11

  12. Planarization and etch back After 1 st planarization 1 st SOG 50 nm W 40 nm W gate metal SOG ALD-Al 2 O 3 After 2 nd planarization 2 nd SOG 50 nm 30 nm 12

  13. NW-MOSFET I -V characteristics D= 30 nm V gs =-0.6 V to 0.8 V in 0.1 V step R on =759 Ω.µ m (at V gs =1 V) 200 200 300 g m, pk (V ds =0.5 V) =280 µ S/ µ m 250 150 I d ( µ A/ µ m ) g m ( µ S/ µ m) 150 ) I d ( µ A/ µ m 200 100 150 100 100 V ds =0.5 V 50 50 50 0 0 0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4 0.5 V gs (V) V ds (V) At V DS =0.5 V (normalized by Single nanowire MOSFET: periphery): • D= 30 nm • g m,pk =280 μ S/ μ m • L ch = 80 nm • R on =759 Ω . μ m • 4.5 nm Al 2 O 3 (EOT = 2.2 nm) 13

  14. D= 30 nm I nGaAs NW-MOSFETs V ds =0.5 V -4 10 I g < 10 -9 A/ µ m I d ( A/ µ m ) -5 10 V ds =0.05 V -6 10 DIBL=195 mV/V -7 S=145 mV/dec, V ds =0.05 V 10 S=200 mV/dec, V ds =0.5 V -8 10 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V gs (V) 14

  15. D= 50 nm I nGaAs NW-MOSFET V gs =-0.6 V to 0.8 V in 0.1 V step 700 700 R on =310 Ω.µ m (at V gs =1 V) 600 600 g m, pk (V ds =0.5 V) 600 500 =730 µ S/ µ m 500 ) g m ( µ S/ µ m) I d ( µ A/ µ m 500 I d ( µ A/ µ m ) 400 400 400 300 300 300 V ds =0.5 V 200 200 200 100 100 100 0 0 0 -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.0 0.1 0.2 0.3 0.4 0.5 V gs (V) V ds (V) At V ds =0.5 V: • g m,pk =730 μ S/ μ m • R on =310 Ω . μ m 15

  16. D= 50 nm I nGaAs NW-MOSFETs -3 10 V ds =0.5 V I g < 10 -10 A / µ m -4 10 V ds =0.05 V I d ( A/ µ m ) -5 10 DIBL=360 mV/V S=210 mV/dec, V ds =0.05 V S=305 mV/dec, V ds =0.5 V -6 10 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 V gs (V) 16

  17. I mpact of nanowire diameter 450 350 400 V ds =0.5 V S (mV/dec) DIBL (mV/V) 300 350 250 300 250 200 200 V ds =0.05 V 150 150 30 35 40 45 50 30 35 40 45 50 Diameter (nm) Diameter (nm) Error bars 800 1200 indicate g m ( µ S/ µ m ) R on ( Ω . µ m) 1000 distribution of 600 ~ 10 devices 800 400 600 200 V ds =0.5 V 400 V gs =1 V 200 30 35 40 45 50 30 35 40 45 50 Diameter (nm) Diameter (nm) D↓  S↓, DIBL↓, g m ↓, R on ↑ 17

  18. I mpact of digital etch Single nanowire MOSFET: 500 digital etch • D= 40 nm (final diameter) 400 g m ( µ S/ µ m) 300 V ds =0.5 V no digital etch -4 200 10 100 V ds =0.05 V I d (A/ µ m) V ds =0.5 V -5 10 0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 V gs (V) -6 10 digital etch V ds =1 V -3 10 no digital etch -7 10 I g (A/cm 2 ) no digital etch -4 -0.6 -0.4 -0.2 0.0 0.2 0.4 10 V gs (V) digital etch -5 10 Digital etch  S↓, g m ↑ , I g ↓ • Better sidewall interface -6 10 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 • R on and DIBL unchanged V gs (V) 18

  19. Benchmarking against bottom-up vertical I nGaAs NW-MOSFETs Tanaka, APEX 10 Tomioka, IEDM 11 Bottom up Tomioka, Nature 12 1200 Persson, DRC 12 Persson, EDL 10 1000 g m,pk ( µ S/ µ m ) This work (Top down) 800 Persson, EDL 2012 Persson, DRC 2012 600 This work 400 200 V ds =0.5 V 0 200 400 600 S(mV/dec) Tanaka, APEX 2010 Tomioka, Nature 2012 • Fundamental trade-off between transport and short-channel effects • Top-down NW-MOSFETs as good as bottom up devices 19

  20. Conclusions • First demonstration of top-down III-V GAA NW- MOSFET with vertical channel • Novel III-V RIE process with sub-20 nm resolution • 30 nm diameter NW MOSFET achieved • Digital etch improves subthreshold and transport characteristics • Device performance matches that of best bottom-up vertical NW III-V MOSFETs 20

  21. Acknowledgement • NSF E3S • Fabrication facility at MIT labs: MTL, SEBL • MIT colleagues: T. Yu, L. Guo, W. Chern, A. Vardi, L. Xia, D. Antoniadis, J. Hoyt, D. Jin, A. Guo, S. Warnock, W. Lu, Y. Wu, J. Teherani • E3S colleagues: A. Lakhani, S. Agarwal, M. Eggleston, E. Yablonovitch, M. Wu 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend