i ngaas mosfets for cmos
play

I nGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. - PowerPoint PPT Presentation

I nGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim 1 , T.-W. Kim 2 , J. Lin, W. Lu, A. Vardi and X. Zhao Microsystems Technology Laboratories, MIT 1 Global Foundries 2 Sematech


  1. I nGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim 1 , T.-W. Kim 2 , J. Lin, W. Lu, A. Vardi and X. Zhao Microsystems Technology Laboratories, MIT 1 Global Foundries 2 Sematech International Electron Devices Meeting 2013 Washington D.C., December 9, 2013 Acknowledgements : • Sponsors: Intel, FCRP-MSD, Sematech, NSF, SMA, MIT-Technion • Labs at MIT: MTL, NSL, SEBL 1

  2. I nGaAs High Electron Mobility Transistors g m =2.7 mS/ μ m Kim, IEDM 2011 InGaAs InAlAs channel barrier Main attractions of InGaAs: • μ e = 6,000 - 30,000 cm 2 /V.s @ 300K • v inj = 2.5 - 3.7x10 7 cm/s @ 300 K 2

  3. I nGaAs MOSFETs g m =2.7 mS/ μ m Lin, IEDM 2013 * InGaAs High-K channel oxide *inversion-mode Extraordinary recent progress of InGaAs MOSFETs 3

  4. Technology issue # 1: MOS gate stack Challenge: metal/high-K oxide gate stack – Fabricated through ex-situ process – Very thin barrier (EOT ~ 0.5 nm) – Low gate leakage (I G <1 A/cm 2 at V GS =0.5 V) – Low D it (<3x10 12 eV -1 .cm -2 in top ~0.3 eV of bandgap and inside CB) – Reliable high-K dielectric n + n + 4

  5. I nterface quality: Al 2 O 3 / I nGaAs vs. Al 2 O 3 / Si Al 2 O 3 /Si Al 2 O 3 /InGaAs E v E c E v E c Brammertz, APL 2009 Werner, JAP 2011 Close to E c , Al 2 O 3 /InGaAs comparable D it to Al 2 O 3 /Si interface 5

  6. Buried-channel vs. surface channel? Classic trade-off: – Surface channel: high scalability but low mobility (µ e <2,000 cm 2 /V.s) – Buried channel: high mobility but high EOT and t barr ↓  µ e ↓ 12 nm Al 2 O 3 InP good choice for barrier: Urabe, ME 2011  wide E g , lattice matched to In 0.53 Ga 0.47 As 6

  7. HfO 2 vs. Al 2 O 3 in buried-channel MOSFETs 500 °C PDA L g = 150 nm -4 10 V ds = 50 mV -1 ) -5 10 -2 eV Al 2 O 3 100 I d (A/  m) S~85 mV/dec -6 12 cm 10 HfO 2 -7 10 D it (x10 10 HfO 2 (2 nm) -8 10 E V E C InP Al 2 O 3 /HfO 2 (0.4/2 nm) -9 1 10 -0.8 -0.4 0.0 0.4 0.8 -0.4 -0.2 0.0 0.2 0.4 E-E i (eV ) V gs (V) Galatage - UT Dallas, 2012 HfO 2 (2 nm) directly on InP (1 nm): EOT~0.8 nm • Low D it close to E c EOT~1 nm • Steep subthreshold swing • Low I off (nA/ μ m range) Lin, IEDM 2012 7

  8. HfO 2 in surface-channel MOSFETs EOT~0.5 nm EOT~0.8 nm Lin, IEDM 2013 HfO 2 (2.5 nm) directly on InGaAs: • Comparable S as buried-channel device D it ~2x10 12 • EOT ↓  I d ↑ eV -1 .cm -2 • Low ALD temperature key Suzuki, JAP 2012 8

  9. Pristine interface for high MOS quality Semiconductor surface exposed SiO 2 immediately before MOS formation Mo n + cap n+ cap i-InP Channel  -Si Barrier: InP (1 nm) + Al 2 O 3 (0.4 nm) + HfO 2 (2 nm) Lin, IEDM 2012 • S = 69 mV/dec at V DS = 50 mV • Close to lowest S reported in any III-V MOSFET: 66 mV/dec [Radosavljevic, IEDM 2011] 9

  10. Technology issue # 2: ohmic contacts Challenge: nanometer-scale ohmic contacts with low R c – Tiny (L c < 30 nm) – Low contact resistance (R c < 50 Ω .µm) – Self-aligned to gate (L side < 10 nm) 10

  11. New “nano-TLM” test structure to characterize short contacts � || � � ��� � csch � �� � �� � � � � ��� � � � � ��� � csch � coth 2� �� � �� � �� 2� � Lu, EDL (submitted) Decouples impact of metal resistance on short contacts 11

  12. Contact-first process for Mo-I nGaAs ohmic contacts Fabrication process: Surface cleaning Mo deposition E-beam lithography Mo RIE Mesa isolation Pad metallization Contact anneal Lu, EDL (submitted) • Achieved contacts with length down to 19 nm • Contact-first process preserves high-quality interface 12

  13. Nanometer-scale Mo-I nGaAs contacts Mo on n + -In 0.53 Ga 0.47 As: Dormaier JVSTB 2012 Singisetti APL 2008 Baraskar JAP 2013 Crook APL 2007 Lin JAP 2013 Lu, EDL (submitted) 6.6 Ω . μ m • R c blows up for very small contacts with L c < L t = 113 nm • R c ~ 40 Ω . μ m for L c ~ 20 nm Average  c = 0.69  .  m 2 • • Contacts thermally stable up to 400 o C 13

  14. Ni-I nGaAs ohmic contact Subramanian, JES 2012 Oxland, EDL 2012 • Ni diffused into InGaAs at 250 o C Kim, IEDM 2010 • Ni-InGaAs formed • Unreacted Ni removed using HCl-based selective etchant R c ~ 50  .  m demonstrated [Kim VLSI Tech 2013] • 14

  15. Technology issue # 3: self-aligned MOSFET architectures Challenge: ohmic contacts very closely spaced from gate – Design of access region – Must maintain high-quality MOS interface and low R c Gate-first process : Gate-first process : Gate-last process : “silicided” S/D regrown S/D recessed S/D Hill, IEDM 2010 Egard, IEDM 2011 Radosavljevic, IEDM 2009 Kim, VLSI Tech 2013 Zhou, IEDM 2012 Lin, IEDM 2012 Lee, VLSI Tech 2013 15

  16. Gate-last self-aligned I nGaAs MOSFETs • Ohmic contact first (Mo) • Extensive RIE (F-based) • Interface exposed immediately before gate stack formation • Process designed to be compatible with Si fab • RIE damage annealed at 340 o C: Lin, IEDM 2012 16

  17. Gate-last self-aligned I nGaAs MOSFETs Lin, IEDM 2012 Lin, IEDM 2013 W Mo L g =50 nm L side • Buried-channel (EOT~0.8 nm) • Surface-channel (EOT~0.5 nm) • Wet semiconductor etch • Dry semiconductor etch + digital etch of cap • L side ~ 30 nm • L side ~ 5 nm 17

  18. I mpact of L side L g = 70 nm Lin, IEDM 2013 500 L side ↓ 400 I on (  A/  m)  g m ↑ 300  S ↑ 200  I on at fixed I off ↓ I off =100 nA/  m, V dd =0.5 V 100  GIDL ↑ 0 50 100 150 200 L g (nm) 18

  19. Technology issue # 4: Tri-gate MOSFET Challenge: acceptable I ON and SCE on a small-footprint – Planar design does not provide enough “electrostatic integrity” – Need tighter channel control through 3D device design Wu, IEDM 2009 Radosavljevic, IEDM 2010 Chin, EDL 2011 Radosavljevic, IEDM 2011 Planar MOSFET Tri-gate MOSFET 19

  20. Fin formation Direct fin growth by Fin etch by Aspect Ratio Trapping RIE + digital etch 20 nm • BCl 3 /SiCl 4 /Ar RIE chemistry • Digital etch: self-limiting (2 nm/cycle) • Some defects reach surface • No notching in heterostructures • Inter-diffusion of dopant species Fiorenza, ECST 2010 Zhao, IEDM 2013 Waldron, ECST 2012 20

  21. Mo contacts to fin • Mo-first process • Mo used as mask for fin etch Mo Mo sidewall contacts • With top Mo contact: Mo − R c ~ 7 Ω . μ m • With sidewall contact: 100 nm − R c ~ 12 Ω . μ m Mo on sidewalls 21

  22. Fin sidewall MOS Double-gate sidewall MOSFET to study sidewall MOS quality Mo SiO 2 25 nm Al 2 O 3 W f =30 nm V GS =0.5 V 10 1 10 I D [  A  m] I D [  A/  m] At sidewall: 0.1 W f =35 nm D it ~ 1.4x10 13 eV -1 .cm -2 0.01 V GS =0.3 V 5 1E-3 W f =30 nm V GS =-0.1 V V GS =0.1 V 1E-4 W f =25 nm 0 0.0 0.1 0.2 0.3 0.4 0.5 -1 0 1 2 V GS [V] V GS [V] 22

  23. Conclusions • Remarkable recent progress in InGaAs MOSFETs – g m (MOSFET) = g m (HEMT) – R on (MOSFET) < R on (HEMT) Compact, self-aligned devices; link to be engineered to Very low R c balance performance and SCE contacts at close to target length Good quality MOS stack close to target EOT • Many issues to investigate: – Tri-gate technology, integration with p-MOSFETs on Si, reliability 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend