nanometer scale i ngaas field effect transistors for thz
play

Nanometer-Scale I nGaAs Field-Effect Transistors for THz and CMOS - PowerPoint PPT Presentation

Nanometer-Scale I nGaAs Field-Effect Transistors for THz and CMOS Technologies J. A. del Alamo Microsystems Technology Laboratories, MIT ESSDERC-ESSCIRC 2013 Bucharest, Romania, September 16-20, 2013 Acknowledgements: D. Antoniadis, A.


  1. Nanometer-Scale I nGaAs Field-Effect Transistors for THz and CMOS Technologies J. A. del Alamo Microsystems Technology Laboratories, MIT ESSDERC-ESSCIRC 2013 Bucharest, Romania, September 16-20, 2013 Acknowledgements: • D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia • Sponsors: Intel, FCRP-MSD, ARL, SRC • Labs at MIT: MTL, NSL, SEBL 1

  2. Outline 1. InGaAs HEMT today 2. InGaAs HEMTs towards THz operation 3. InGaAs MOSFETs: towards sub-10 nm CMOS 2

  3. A bit of perspective… • Invention of AlGaAs/GaAs HEMT: Fujitsu Labs. 1980 • First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982 • First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985 • Main attraction of InGaAs: RT μ e = 6,000~30,000 cm 2 /V.s Ketterson, EDL 1985 Mimura, JJAPL 1980 Chen, EDL 1982 3

  4. I nGaAs Electronics Today UMTS-LTE PA module Chow, MTT-S 2008 40 Gb/s modulator driver 77 GHz transceiver Carroll, MTT-S 2002 Tessmann, GaAs IC 1999 Bipolar/E-D PHEMT process Single-chip WLAN MMIC, Morkner, RFIC 2007 Henderson, Mantech 2007 4

  5. I nGaAs High Electron Mobility Transistor (HEMT) Modulation doping:  2-Dimensional Electron Gas at InAlAs/InGaAs interface 5

  6. I nGaAs HEMT: high-frequency record vs. time Teledyne/MIT: f T =710 GHz 800 f T =688 GHz, f max =800 GHz f max =478 GHz 700 Chang, APEX 2013 600 (NCTU ) 500 on InP f T (GHz) substrate 400 Devices 300 fabricated at MIT 200 on GaAs substrate 100 0 1980 1990 2000 2010 Year • Highest f T of any FET on any material system • Best balanced f T and f max of any transistor on any material 6

  7. I nGaAs HEMTs: circuit demonstrations 80 Gb/s multiplexer IC 10-stage 670 GHz LNA Wurfl, GAAS 2004 Leong, IPRM 2012 6-stage 600 GHz LNA Sarkozy, IPRM 2013 Tessmann, CSICS 2012 7

  8. I nGaAs HEMTs on I nP used to map infant universe WMAP= Wilkinson Microwave Anisotropy Probe Launched 2001 Full-sky map of Cosmic Microwave Background radiation (oldest light in Universe)  age of Universe: 13.73B years (±1%) 0.1 µm InGaAs HEMT LNA http://map.gsfc.nasa.gov/ Pospieszalski, MTT-S 2000 8

  9. A closer look: I nGaAs HEMTs at MI T - QW channel (t ch = 10 nm): • InAs core • InGaAs cladding   e = 13,200 cm 2 /V-sec - InAlAs barrier (t ins = 4 nm) - L g = 30 nm Kim, EDL 2010 9 9

  10. L g = 30 nm I nGaAs HEMT V GS = 0.8 0.4 V Kim, EDL 2010 40 3 0.6 I D [mA/  m] 0.2 V H 21 0.4 2.0 0.2 30 2 U g 0 V 0.0 1.5 0.0 0.2 0.4 0.6 0.8 Gains [dB] V DS [V] MSG/MAG 20 1 g m [mS/  m] K 1.0 10 0 K 0.5 V DS =0.5 V, V GS =0.2 V V DS = 0.5 V 0 -1 0.0 9 10 11 12 10 10 10 10 -0.6 -0.4 -0.2 0.0 0.2 V GS [V] Frequency [Hz] • High transconductance: g m = 1.9 mS/ μ m at V DD =0.5 V • First transistor of any kind with both f T and f max > 640 GHz 10 10 10 10

  11. How to reach f T = 1 THz? 1200 1000 30% reduction 1 THz in all the parasitics 800 600 f T [GHz] 400 V DS = 0.6 V Measured f T Modeled f T Model Projection 200 30 100 Kim, IEDM 2011 L g [nm] f T = 1 THz feasible by:  scaling to L g ≈ 25 nm  ~30% R and C parasitic reduction 11

  12. Record f T I nGaAs HEMTs: megatrends x=0.53 • Over time: L g ↓ , In x Ga 1-x As channel x InAs ↑ • L g , x InAs saturated  no more progress possible? 12

  13. Record f T I nGaAs HEMTs: megatrends • Over time: t ch ↓ , t ins ↓ • t ch , t ins saturated  no more progress possible? 13

  14. Limit to HEMT barrier scaling: gate leakage current InGaAs HEMTs L g =40 nm V DS =0.5 V Kim, EDL 2013 At L g =30-40 nm, modern HEMTs are at the limit of scaling! 14

  15. Solution: MOS gate! InGaAs HEMTs 10 -5 x! Al 2 O 3 (3 nm)/InP (2 nm)/InGaAs MOSFET L g =40 nm V DS =0.5 V Kim, EDL 2013 Need high-K gate dielectric: HEMT  MOSFET! 15

  16. I nGaAs MOSFETs with f T = 370 GHz (Teledyne/ MI T/ I ntelliEpi/ Sematech) Kim, APL 2012 50 H 21 40 H 21 • Channel: 10 nm In 0.7 Ga 0.3 As U g 30 Gains [dB] f T =370 GHz • Barrier: 1 nm InP + 2 nm Al 2 O 3 f T = 370 GHz MSG 20 • L g = 60 nm 10 f max = 280 GHz • g m = 2 mS/ μ m V DS =0.5 V 0 • R ON = 220 Ω . μ m 9 10 11 10 10 10 Frequency [Hz] 16

  17. Historical evolution: I nGaAs MOSFETs vs. HEMTs Lin, IEDM 2013 Radosavljevic, IEDM 2009 Wieder, EDL 1981 Ren, EDL 1998 Progress reflects improvements in oxide/III-V interface 17

  18. What made the difference? Oxide/ I I I -V interfaces with unpinned Fermi level by ALD ALD eliminates surface oxides that pin Fermi level: – First observed with Al 2 O 3 , then with other high-K dielectrics – First seen in GaAs, then in other III-Vs “Self cleaning” Clean, smooth interface without surface oxides Huang, APL 2005 18

  19. I nterface quality: Al 2 O 3 / I nGaAs vs. Al 2 O 3 / Si Al 2 O 3 /Si Al 2 O 3 /InGaAs E v E c E v E c Brammertz, APL 2009 Werner, JAP 2011 Close to E c , Al 2 O 3 /InGaAs comparable D it to Al 2 O 3 /Si interface 19

  20. I nGaAs n-MOSFET: best candidate for post-Si CMOS Si CMOS scaling seriously stressed  Moore’s law threatened ? Intel microprocessors 20

  21. 21

  22. CMOS scaling in the 21 st century Si CMOS has entered era of “power-constrained scaling”:  Microprocessor power density saturated at ~100 W/cm 2 Pop, Nano Res 2010 Future scaling demands V DD ↓ 22

  23. How to enable further V DD reduction? • Transistor is switch: • Goals of scaling: – reduce transistor footprint – reduce V DD – extract maximum I ON for given I OFF • The path forward: – increase electron velocity  I ON ↑  use InGaAs! – tighten electron confinement  S ↓ 23

  24. Electron injection velocity: I nGaAs vs. Si Measurements of electron injection velocity in HEMTs: v inj E C E V Kim, IEDM 2009 Liu, Springer 2010 Khakifirooz, TED 2008 del Alamo, Nature 2011 • v inj (InGaAs) increases with InAs fraction in channel • v inj (InGaAs) > 2v inj (Si) at less than half V DD • ~100% ballistic transport at L g ~30 nm 24

  25. L g = 30 nm I nGaAs HEMT – Subthreshold characteristics -3 10 V DS = 0.5 V Kim, EDL 2010 L g =30 nm -4 10 V DS = 0.05 V I D -5 10 I D , I G [A/  m] -6 10 V DS = 0.5 V -7 10 I G -8 10 V DS = 0.05 V -9 10 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 V GS [V] • S = 74 mV/dec • Sharp subthreshold behavior due to tight electron confinement in quantum well 25

  26. L g = 30 nm I nGaAs HEMT – Subthreshold characteristics I ON =0.52 mA/ μ m -3 10 V DS = 0.5 V Kim, EDL 2010 -4 10 V DS = 0.05 V I D -5 10 I D , I G [A/  m] -6 10 V DS = 0.5 V I OFF =100 nA/ μ m -7 10 I G -8 10 V DS = 0.05 V -9 10 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 V GS [V] 0.5 V • S = 74 mV/dec • At I OFF =100 nA/ μ m and V DD =0.5 V, I ON =0.52 mA/ μ m 26

  27. I nGaAs HEMTs: Benchmarking with Si FOM that integrates short-channel effects and transport: I ON @ I OFF =100 nA/µm, V DD =0.5 V Kim EDL 2010 InGaAs HEMT (MIT) IEDM 2008 del Alamo, Nature 2011 InGaAs HEMTs: higher I ON for same I OFF than Si 27

  28. I nGaAs MOSFET: possible designs n + n + Recessed S/D QW-MOSFET Regrown S/D QW-MOSFET Nanowire MOSFET Trigate MOSFET 28

  29. Self-Aligned I nGaAs QW-MOSFETs (MI T) • Scaled barrier (InP: 1 nm + HfO 2 : 2 nm) • 10 nm thick channel with InAs core • Tight S/D spacing (L side ~30 nm) • Process designed to be compatible with Si fab Lin, IEDM 2012 29

  30. L g = 30 nm Self-aligned QW-MOSFET -3 320 10 L g =30 nm 280 -4 At V DS = 0.5 V: 10 240 S (mV/dec) I D (A/  m) -5 V DS =0.5 V 10 • g m = 1.4 mS/µm 200 -6 10 160 • S = 114 mV/dec -7 10 120 • R ON = 470  m 80 50 mV -8 10 -0.4 -0.2 0.0 0.2 V GS (V) Lin, IEDM 2012 30

  31. Scaling and benchmarking 500 160 III-V FETs V DS = 0.5 V MIT HEMT 400 140 S min (mV/dec) Planar I on (  A/  m) Trigate This work 300 120 III-V FETs 200 100 MIT HEMT Planar I off =100 nA/  m 100 80 Trigate V DD =0.5 V This work 0 60 40 80 120 160 40 80 120 160 L g (nm) L g (nm) Lin, IEDM 2012 • Superior behavior to any planar III-V MOSFET to date • Matches performance of Intel’s InGaAs Trigate MOSFETs [Radosavljevic, IEDM 2011] 31

  32. Sharp Subthreshold Characteristics From: • Aggressively scaled barrier • High quality interface: gate last process Barrier: InP (1 nm) + Al 2 O 3 (0.4 nm) + HfO 2 (2 nm) Lin, IEDM 2012 • S = 69 mV/dec at V DS = 50 mV • Close to lowest S reported in any III-V MOSFET: 66 mV/dec [Radosavljevic, IEDM 2011] 32

  33. Regrown source/ drain I nGaAs QW-MOSFET on Si (HKUST) • MOCVD epi growth on Si wafer • n + -InGaAs raised source/drain • Self-aligned to gate • Composite barrier: InAlAs (10 nm) + Al 2 O 3 (4.6 nm) Zhou, IEDM 2012 33

  34. Characteristics of L g = 30 nm MOSFET At V DS =0.5 V: • g m = 1.7 mS/µm • S = 186 mV/dec • R ON = 157 Ω .µm Zhou, IEDM 2012 34

  35. Multiple-gate MOSFETs # gates ↑  improved electrostatics  enhanced scalability FinFET Trigate Nanowire Chen, ICSICT 2008 35

  36. I nGaAs Trigate MOSFET (I ntel) H FIN =40 nm Radosavljevic, IEDM 2011 Improved S over planar MOSFET on same heterostructure 36

  37. I nGaAs Nanowire MOSFETs D = 30 nm D = 20 nm D = 28 nm Gu, IEDM 2012 Persson, DRC 2012 Zhao, IEDM 2013 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend