beam current monitors
play

BeamCurrentMonitors JeanClaudeDenard (SynchrotronSOLEIL) - PowerPoint PPT Presentation

BeamCurrentMonitors JeanClaudeDenard (SynchrotronSOLEIL) DITANETSchoolonBeamDiagnosticTechniques 30March 3April2009 RoyalHollowayUniversityofLondon(UK) Summary Electromagnetic


  1. Beam�Current�Monitors Jean�Claude�Denard (Synchrotron�SOLEIL) DITANET�School�on�Beam�Diagnostic�Techniques 30�March�– 3�April�2009 Royal�Holloway�University�of�London�(UK)

  2. Summary ☼ Electromagnetic field associated to�charged particle beams ☼ Destructive�monitors:�faraday�cup …. ☼ Non�destructive�monitors;�electromagnetic interaction � Wall current monitors� � Current transformers � Cavity monitors,�SQUID ☼ References DITANET�School�on� Beam�Current�Monitors 2 Beam�Diagnostics Jean�Claude�Denard

  3. Longitudinal�E�Field�Distribution�of a�Point�Charge�in�a Conducting Tube Static charge Moving charge Ultra�relativistic charge rms length σ w =�a/√2 σ w ≈�0 σ w =�a/γ√2 a a v� =�0 v� =�ß c v� ≈ c • Moving E�field creates H�field • The Wall Current distribution�is • Charge�produces E�field inside the tube the image�of the beam • E�field induces image� • The image�charges�move along distribution but�of opposite�sign charges�of opposite�sign on� with the inner charge. and without DC�component the wall • Wall current +�beam current =�0.� Then,�Ampère’s�law,� Note:�there is no E�field ∫ (H�dl)�=�i�indicates that H�=�0� outside the tube outside the tube�(except for�DC� field). DITANET�School�on� Beam�Current�Monitors 3 Beam�Diagnostics Jean�Claude�Denard

  4. Example of Wall Current Longitudinal�Distribution�for�a� Point!like Moving Charge Numerical Examples with a�Tube�Diam.�2a�=�50�mm kinetic energy E�for�electrons 0 100�keV 1�MeV 10�MeV for�protons 0 184�MeV 1.8�GeV 18�GeV Lorentz�factor γ 1 1.2 3 20.6 β =�(1�1/�γ 2 ) ½ 0 0.55 0.94 0.999 σ w =�a/(γ√2) 18�mm 15�mm 6�mm 0.9�mm rms length (ps)�=�a/(β γc√2) ∞ 90�ps 21�ps 2.9�ps Wall current BW�limitation�(*) 0 1.8�GHz 7.5�GHz 55�GHz (*) The actual distribution�is not gaussian,�but�for�the sake of simplicity,�its Bandwidth has� been�approximated to�that of a�gaussian distribution�of same rms length If� σ l >>a� / γ√2 ,�wall current distribution�=�beam distribution� σ l DITANET�School�on� Beam�Current�Monitors 4 Beam�Diagnostics Jean�Claude�Denard

  5. Fields�associated�to�a�charged�particle�beam�for�a� beam�length�� σ l >>a� / γ √ 2 DITANET�School�on� Beam�Current�Monitors 5 Beam�Diagnostics Jean�Claude�Denard

  6. Transverse�Field�Distribution Ultra�relativistic charge Moving charge Static charge v�≈ c v�=�0 v�<�c H H ρ ρ ρ E E E r r r ∫ = ( H . dl ) i ∫ = Ampère' s Law : H . dl i magnetic field no magnetic field inside → = π at� radius � r � H ( r ) i / 2 r appears � E = η TEM �wave : � � o H η = µ ε = Ω = With� � � /� � � 377 � � �vacuum � impedance o o o outside the pipe:�no E�field ε = � �vacuum � electric � permittivi ty o no magnetic field (except DC) µ = � �vacuum � magnetic � permeabili ty o DITANET�School�on� Beam�Current�Monitors 6 Beam�Diagnostics Jean�Claude�Denard

  7. TEM�Wave in�Vacuum�Chamber is Like in�an�Air�Filled Coaxial�Transmission�Line E E H P H P i(t) i(t) ☼ Similarities :�TEM�wave carries the same EM�energy (Pointing vector P�=�E�× H):� ☼ a�monitor�can be realistically tested in�a�coaxial�line structure. ☼ Some differences : � At High frequencies (cutoff frequencies are�different in�the two cases) DITANET�School�on� Beam�Current�Monitors 7 Beam�Diagnostics Jean�Claude�Denard

  8. Faraday�Cup Faraday�cup i Current gun Source e� ammeter ammeter • Destructive • Absolute measurement of DC�component�with an�ammeter • An�oscilloscope�or�Sample &�Hold measures the peak current in� case�of pulsed beam . • Can�be used for�the calibration�of non�destructive�monitors�that provide relative�measurements.�For�example FC�calibrates an�RF� cavity current monitor�on�CEBAF�injector (CW�superconducting Linac). DITANET�School�on� Beam�Current�Monitors 8 Beam�Diagnostics Jean�Claude�Denard

  9. Faraday�Cup;�Design�Issues ☼ Absolute accuracy is usually around 1%,�it is difficult to�reach 0.1%. ☼ Needs to�absorb all the beam:�block�with large�entrance�size and thickness >>� radiation�length.�A�FC�built at DESY�and presently used on�a�low current 6� GeV beam at JLAb uses�1�m 3 of lead (12�tons). ☼ Backscattered particles (mostly e � ):�narrow entrance�channel,�bias voltage�or� magnetic field redirect the backscattered e � on�the FC.�Accuracy evaluation requires Monte�Carlo�simulations�(EGGS�from SLAC;�GEANT�from CERN). ☼ Power (W)�=�E�in�MeV × I�in�]A.� Example:�5�MeV FC�in�CEBAF�injector�with�200�]A�CW�beam�→ 1000�W.� A�cooling�circuit�takes�the�power�out.�The�isolation�is�done�with�de�ionized� water�and�insulating�rubber�tubes.� ☼ Safety�issues:�FC�needs�to�be�always�terminated�by�a�DC�circuit�to�avoid� arcing�and�a�potentially�dangerous�high�voltage�that�would�develop�at�cable� end.�A�pair�of��high�impedance�diodes�can�be�connected�in�parallel�on�the�FC� output.� DITANET�School�on� Beam�Current�Monitors 9 Beam�Diagnostics Jean�Claude�Denard

  10. SLS�Wide Bandwidth Coaxial�Faraday�Cup (0!4�GHz) 50�ohm Coaxial structure beam M.�Dach�et�al.�(SLS)�;� BIW2000 DITANET�School�on� Beam�Current�Monitors 10 Beam�Diagnostics Jean�Claude�Denard

  11. Calorimeter ☼ Calorimetry refers to�a�direct�measurement of the total�energy delivered to�a� massive�block�of metal (silver or�tungsten)�over a�period of time. ☼ Total�energy is determined by�measuring the temperature rise of the object if: � The average beam energy is precisely known � Any energy losses can be accounted for�by�reliable calculation or�direct� measurement. ☼ A�calorimeter has�been�developed for�CEBAF�CW�beam (A.�Freyberger,�to� be published) DITANET�School�on� Beam�Current�Monitors 11 Beam�Diagnostics Jean�Claude�Denard

  12. Wall Current Monitor:� Beam and Wall Current Spectra for�Ultra�Relativistic Beams Time�domain Frequency�domain ↓ DC 1/T τ ←i�beam→ τ t f 1/2 πτ πτ πτ πτ 0 T T ←i�wall→ t f 0 No�DC DITANET�School�on� Beam�Current�Monitors 12 Beam�Diagnostics Jean�Claude�Denard

  13. Wall Current Monitor:�Concept v out v out t r i wall v out i beam r i wall v out =�i wall *�r DITANET�School�on� Beam�Current�Monitors 13 Beam�Diagnostics Jean�Claude�Denard

  14. WCM:�From�Concept�to�Actual�Implementation C gap ] ☼ For�vacuum�quality:�ceramic gap� ☼ r�is made of several resistors in� i wall parallel,�distributed around the gap.� Special chip�resistors still behave r as�resistors in�the GHz�frequency i wall ] range. L ☼ Electrical shield:�avoids parasitic external currents flowing through r,� WCM�response and prevents the beam EM�field log�amplitude from radiating outside the monitor.� ☼ High ]�material fills the space ω (log scale ) between gap�and shielding for�low ω = π r L 1 rC 2 f gap frequency response. ; ; = L o r h Ln ( b / a ) π 2 DITANET�School�on� Beam�Current�Monitors 14 Beam�Diagnostics Jean�Claude�Denard

  15. Implementation Example:�6�kHz�to�6�GHz�WCM�:�(R.� Weber�BIW93) Ceramic gap�and surface�mounted resistors ferrites ferrites Resistors are�not pure�resistors at high frequencies ≈ 6�nH Resistor with 5�mm�wire connections ≡ r r ≈ 1�pF In�the GHz�range,�standard�resistors are�replaced by�Surface�Mounted Resistors that have�smaller inductance�and capacitance.� DITANET�School�on� Beam�Current�Monitors 15 Beam�Diagnostics Jean�Claude�Denard

  16. 6�kHz�to�6�GHz�WCM�:�(R.�Weber) ☼ r�=�1.4�ohm�(80�resistors in�parallel). ☼ rC gap circuit�at high frequencies � Ceramic gap�considered as�a�lump� t�(thickness) capacitor:� w S d m =�90�mm;� t =�3.2�mm;�and w =�4.5mm� = ε ε C =>�� C gap =�33�pF gap 0 r d m t 1 = = and � f 3 . 4 GHz π 2 rC h ≅ π S w * 2 d gap m � Ceramic gap�behaves as�a�radial� ε ≈ alumina : � 9 . 5 transmission�line matched to�its 1.4a r characteristic impedance:� f h >�6�GHz� (measured) h Shield =�1�turn ☼ rL circuit�at low frequencies a r = = = b f low 5 . 6 � kHz �with L 40 ]H ; ; π 2 L = L o r h Ln ( b / a ) π 2 DITANET�School�on� Beam�Current�Monitors 16 Beam�Diagnostics Jean�Claude�Denard

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend