ultra thin body self aligned i ngaas mosfets on i
play

Ultra-Thin Body Self-Aligned I nGaAs MOSFETs on I nsulator (I I I - PowerPoint PPT Presentation

Ultra-Thin Body Self-Aligned I nGaAs MOSFETs on I nsulator (I I I -V-O-I ) by a Tight-Pitch Process Jianqiang Lin Lukas Czornomaz*, Nicolas Daix*, Dimitri A. Antoniadis, and Jess A. del Alamo Microsystems Technology Laboratories, MIT * IBM


  1. Ultra-Thin Body Self-Aligned I nGaAs MOSFETs on I nsulator (I I I -V-O-I ) by a Tight-Pitch Process Jianqiang Lin Lukas Czornomaz*, Nicolas Daix*, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT * IBM Zurich Research Laboratory June 22, 2014 Sponsors: • FCRP-MSD Center • MIT Donner Chair • MIT SMA and SMART programs • Project Marie Curie FP7-PEOPLE-2011- IEF-300936 LATICE

  2. Motivation • Superior electron transport properties in InGaAs channel [J. del Alamo, Nature 2011] In 0.7 Ga 0.3 As HEMTs V DS =0.5 V Strained Si Si V DS =1.1-1.3 V 2 2

  3. Si/III-V Integration UC Berkeley [K. Takei, APL 2013] U Tokyo [S. Kim, IEDM 2013] AIST [T. Irisawa, IEDM 2013] MIT / IBM [This work] Contact Gate n+ BOX L c =150 nm p-type Si 3

  4. Substrate Fabrication Following Czornomaz, IEDM 2012 2. H + implants & Al 2 O 3 depo 1. MBE growth BOX: Al 2 O 3 Protection layer: InGaAs Buffer: InAlAs Channel: In 0.7 Ga 0.3 As Si δ -doping: 1x10 12 cm -2 Device layers Stopper: InP n + cap InP buffer/wafer H + InP buffer/wafer 3. Wafer bonding 4. Thermal split InP H + 5. InP etch back H + Device layers BOX BOX BOX p-Si p-Si p-Si 4

  5. Substrate Fabrication 3 nm RMS= 0.25 nm Device layers BOX p-Si 0 2 µ m 0 • Smooth surface of final • Final substrate substrate 5

  6. Device Fabrication Following Lin, IEDM 2013 2. Gate opening, 3. 3-step gate recess, 1. Ohmic/Oxide deposition Mesa isolation Damage anneal SiO 2 W/Mo n + Cap Channel BOX p-Si 4. Gate oxide ALD 5. Gate metal 6. Pad formation Pad Mo HfO 2 Ledge 6

  7. Final Device Structure HfO 2 M1 SiO 2 W/Mo Mo n + cap InGaAs L Ledge Buffer Al 2 O 3 p-Si • Gate dielectric HfO 2 =3.5 nm, EOT=0.7 nm • Intrinsic channel In 0.7 Ga 0.3 As= 8 nm • BOX Al 2 O 3 = 30 nm 7

  8. TEM Cross Sections • Process enables:  Tight pitch: L p =150 nm Contact  Precise control of ledge: Gate n+ L ledge =30 nm BOX L c =150 nm p p-type Si Mo Contact n+ HfO 2 Mo Gate Channel Buffer BOX L g =50 nm L ledge =30 nm 8

  9. Characteristics of L g = 70 nm MOSFETs V gs -V t =0 to 0.8 V in 0.2V step 250 V ds =0.5 V 400 L g =70 nm L g =70 nm 200 300 I d ( µ A/ µ m) g m ( µ A/ µ m) 150 200 100 100 50 0 0 0.0 0.2 0.4 0.6 -0.4 0.0 0.4 0.8 V ds (V) V gs (V) -4 10 FOM at V ds =0.5 V -5 10 • g m,pk = 309 μ S/ μ m -6 10 I d (A/ µ m) • V t = 96 mV -7 10 • S = 140 mV/dec -8 10 -9 V ds =0.05 and 0.5 V • DIBL = 80 mV/V 10 L g =70 nm -10 • R sd = 1050 Ω.μ m 10 -0.4 0.0 0.4 0.8 9 V gs (V)

  10. I mpact of Back Bias 250 250 250 V bs = -2 V V bs = 0 V V bs = 3 V V gs -V t = 0 to 0.8 V at 0.2 V step 200 200 200 I d ( µ A/ µ m) L g =70 nm I d ( µ A/ µ m) I d ( µ A/ µ m) 150 150 150 100 100 100 50 50 50 0 0 0 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 V ds (V) V ds (V) V ds (V) Positive V bs : → R on ↓ → I d ↑ → Output conductance ↓ 10

  11. I mpact of Back Bias V bs =3 V V ds =0.5 V 400 -4 10 V bs =0 V L g =70 nm V bs =-2 V -5 10 300 g m ( µ A/ µ m) -6 V bs =3 V 10 I d (A/ µ m) V bs =0 V 200 V bs decreases -7 10 V bs =-2 V -8 10 100 -9 V ds =0.05 and 0.5 V 10 V bs decreases L g =70 nm 0 -10 10 -0.4 0.0 0.4 0.8 -0.4 0.0 0.4 0.8 V gs (V) V gs (V) Positive V bs : → V t ↓ → S ↑ → g m ↑ → DIBL ↓ 11

  12. I mpact of Back Bias on V t and R sd 1200 100 V t,sat (mV) [L g =1 µ m] 50 R sd ( Ω.µ m) 1000 0 -50 800 -100 600 -150 -4 -2 0 2 4 V bs (V) • R sd modulation • V t tunability: ∆ V t = 200 mV for ∆ V bs = = ± 4 V 12

  13. I mpact of Back Bias on Subthreshold Swing Poisson-Schrödinger simulation 200 L g =70 nm V bs = - 2 V 1 Buffer HfO 2 V ds =0.5 V V bs = 0 V E c (eV) S min (mV/dec) Channel 175 V bs = 2 V 0 (a) 150 -1 -4 0 4 8 12 16 18 10 x 10 V bs =-2V y (nm) 8 N s =4x10 12 cm -2 125 n (cm -3 ) -2 -1 0 1 2 3 6 V bs (V) 2V 4 2 Positive V bs (b) 0 → S ↑ -4 0 4 8 12 16 y (nm) Positive V bs → Deeper electron centroid in channel

  14. I mpact of Back Bias on DI BL TCAD simulation of space charge 130 Space charge L g =70 nm (cm -3 ) 120 S G D 1x10 18 V ds =0.5 V DIBL (mV/V) 110 BOX 100 depletion region 90 V ds =0.5 V 80 V gs -V t =0.1 V 100 nm p-Si V bs =0 70 -2 -1 0 1 2 3 -1x10 18 V bs (V) Positive V bs Positive V bs → DIBL ↓ → Si space charge region shrinks → Ground plane moves closer to channel 14

  15. CV and Mobility 2.0 2500 1 - 100 kHz 1.5 2000 2 ) V bs =0 V 2 /Vs) C ( µ F/cm V bs =3 V 1500 1.0 e (cm V bs =-3 V 1000 µ 0.5 L g = 1 µ m 500 0.0 0 2 4 6 8 -0.5 0.0 0.5 1.0 12 cm -2 ) N s (x10 V gs (V) • Low frequency dispersion, CET~ 2 nm • Lower mobility for negative V bs → Confinement increases • Front gate leakage < 10 -3 A/cm 2 at V g =1 V 15

  16. Benchmarking of S, DI BL and Mobility 200 Planar III-V-O-I MOSFETs 300 This work (V bs =0 V) Planar III-V-O-I MOSFETs S min (mV/dec) VLSI13 Kim This work (V bs =0) 150 DIBL (mV/V) VLSI12 Kim (InAs) 200 VLSI13 Kim IEDM12 Czornomaz VLSI12 Kim (InAs) APL11 Takei (InAs) IEDM12 Czornomaz IEDM13 Czornomaz 100 100 V ds =0.5 V 0 0.1 1 0.1 1 L g ( µ m) L g ( µ m) 2000 This work (V bs = 0 V) IEDM13 Kim • Excellent S, DIBL and VLSI13 Irisawa VLSI13 Kim[T50] transport properties 1500 2 /Vs) IEDM12 Czornomaz e (cm 1000 µ 12 cm -2 N s =7x10 500 5 10 15 20 50 t ch (nm) 16

  17. Conclusions • Demonstrated self-aligned In 0.7 Ga 0.3 As MOSFETs on III-V-O-I on p-type silicon substrate • Promising performance, need to lower R sd • Back gate bias allows wide tunability of device characteristics 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend