ultra high speed ingaas nano hemts
play

Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo - PDF document

Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo School of Electrical Eng. and Computer Sci. Seoul National Univ., Korea 1 st Korea-US Nano Forum InGaAs Nano HEMTs Contents Contents Introduction to InGaAs Nano-HEMTs Nano


  1. Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo School of Electrical Eng. and Computer Sci. Seoul National Univ., Korea 1 st Korea-US Nano Forum InGaAs Nano HEMTs Contents Contents Introduction to InGaAs Nano-HEMTs � Nano Patterning Process beyond Lithography Limit � - Side-wall Gate Process - 50nm In 0.65 GaAs HEMT’s � New Triple Shaped Gate Process - 30nm Sidewall Process & Triple Gate Using BCB Planarization - 30nm In 0.7 GaAs HEMT’s with high cut-off frequency (f T ) � Application of InGaAs Nano-HEMT Devices 110GHz Wideband Distributed Amplifier MMIC - RTD & HEMT Digital IC : 20Gbps MOBILE - � Summary 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  2. Millimeter-Wave/Tera-Hz Technology Millimeter-Wave/Tera-Hz Technology � Broad Bandwidth � High Speed Data Communication � Small Size Antenna � Mobile Communication/Automobile Radar � High Resolution Imaging � Biomedical Imaging ( > 100GHz) Millimeter wave Auto. Radar Demands for High Frequency/High Performance Devices & Circuits � Nano-technology enhances the speed of devices & circuits. (due to the reduction of carrier transit time) 1 st Korea-US Nano Forum InGaAs Nano HEMTs State-of-the-art InGaAs Nano-HEMT’s State-of-the-art InGaAs Nano-HEMT’s n + InGaAs InP InAlAs In 0.7 GaAs CRL- Fujitsu Group’s Work (02,EDL) Gate Length = 25nm f T = 562GHz In 0.7 GaAs Channel (World Record) (with v peak ~ 3.4x10 7 cm/ s) * Fabricated by the state-of-the-art E-beam lithography system 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  3. How to improve f T of Nano-HEMT’s ? How to improve f T of Nano-HEMT’s ? � L g Reduction : L g < 30nm � Strained Channel ( I n x GaAs) R g T- Gate - I ndium Content > 0.7 Metal for Higher v average C par � Structure for Small Parasitics SiO 2 / SiN - Reduction of L g,2nd (< 100nm) x - I ncrease of Height (> 150nm) Recess � f T Enhancement L g � Two-Step Recess Etching I nGaAs/ I nAlAsEpi-Wafer - Damage-Free Condition � Structural Stability < Cross-section of Nano-HEMT’s > - Wide T-Gate : Small R g 1 st Korea-US Nano Forum InGaAs Nano HEMTs Nano Patterning beyond Lithography Limit Nano Patterning beyond Lithography Limit ♦ PR Trimming By Plasma Asing ♦ Side-wall Process Ashing Etch - backed dielectric Photo - resist Dielectric Dielectric Substrate Substrate ♦ RIE Lag Effect ♦ Photo-resist Flow Process Photo - resist Photo - resist Photo - resist Photo - resist Dielectric Dielectric Substrate Substrate 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  4. Low-Damage & Reproducible Side-wall Process Low-Damage & Reproducible Side-wall Process 100 nm Oxide � Two-step Dielectric Etch-back 100 nm - CF 4 / O 2 Mixture : Etching SiO 2 SiN x - SF 6 / Ar Mixture : Etching the residual SiN x < 1 st Line Definition & Re -depo. > 1) Lower Damage than that of other gas Oxide 2) Etch Selectivity of SiN x over SiO 2 SiN x - Typical Selectivity = ~ 20 < Oxide Etch-back by CF 4 Plasma > � L g,final : I nsensitive to over-etch cond. � Low-Damaged & Reproducible Oxide L g,final � L g,final = ~ L g,initial / 2 SiN x < SiN x Etch-back by SF 6 Plasma > 1 st Korea-US Nano Forum InGaAs Nano HEMTs Sidewall Process Results : 50nm Line Sidewall Process Results : 50nm Line PMMA SiO 2 SiN x L g = 100nm SiN x (a) 1 st Gate Definition (c) Etch-Back : On Etching Sidewall Void L g = 50nm (b) SiO 2 Re-deposition (d) Final Sidewall Gate 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  5. 50nm Double Decked T- Gate Fabrication 50nm Double Decked T- Gate Fabrication PMMA T-gate defined Photo by EBMF 10.5 copolymer T -Gate Metal -Resist C par_1 PMMA(200nm) C par_1 Gate foot defined by SiN x (100nm) Dielectric Side-wall Process C par_2 C par_2 ← Reduction of C parasitics for Higher f T 200nm 50nm 1 st Korea-US Nano Forum InGaAs Nano HEMTs Epitaxial Structures for Nano-HEMT Fabrication Epitaxial Structures for Nano-HEMT Fabrication < Epitaxial Structure > < Cross-Section of Nano-HEMT > Schottky 19 n+ InGaAs Cap. 1X10 20nm On InAlAs δ -doping i InP Etch-stopper 4nm Passivation Layer i In AlAs Barrier 8nm 0.52 Selective i In GaAs Channel 10nm Wet Etch 0.65 Spacer i In GaAs Channel 10nm Ar-RIE with 0.53 In 0.53 GaAs Low Damage i In AlAs Buffer 500nm InPEtch-stopper 0.52 In 0.52 AlAs Barrier Si Delta-Doping In 0.52 AlAs Spacer S.I. InP Substrate In 0.65 GaAs Strained Channel In 0.53 GaAs Pre-Channel n s =3x10 12 /cm 2 , µ n,hall =10,300cm 2 /V-s 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  6. 50nm InGaAs Nano-HEMT : DC Characteristics 50nm InGaAs Nano-HEMT : DC Characteristics < L g = 50nm & 65% Strained InGaAs Channel > � V th = -0.6V & G m,max = 1.07S/mm @ V ds = 1.0V 1 st Korea-US Nano Forum InGaAs Nano HEMTs 50nm InGaAs Nano-HEMT: Microwave Characteristics 50nm InGaAs Nano-HEMT: Microwave Characteristics - Bias Point : Maximum Transconductance Condition - f T = 305GHz ⇒ f T = 305 GHz & f max = 302GHz 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  7. InGaAs Nano-HEMT’s : Metal Filling Issue InGaAs Nano-HEMT’s : Metal Filling Issue Metal High Performance Nano- HEMTs SiO 2 � L g � , T-Gate Aspect Ratio � (For Small C parasitics ) SiN x � metal filling of fine line with high A-R needed. Epi - Structure < Gate Filling By E-Beam Evaporation> < Gate Filling By W-Sputtering> Only 60nm Filling W= 150nm L g = 40nm H= 200nm W Filling Aspect Ratio (H/ L g ) = 5 Good Gate Metal Filling Not Filled After 50nm Evaporation W : Good Thermal Reliability 1 st Korea-US Nano Forum InGaAs Nano HEMTs T-Gate Process for 30nm InGaAs HEMT’s T-Gate Process for 30nm InGaAs HEMT’s High Temp. Sputter : Problem in Lift-off � Metal Etch Process BCB Planarization Ti/Au Ti/Au Dielectric Ti/Au BCB PMMA PMMA W Ti/Au Dielectric Dielectric Tusten (W) Good Filling Epi-wafer Dielectric Dielectric High Temp. Epi-wafer Sputter BCB Etch-Back Ti/Au & Head Litho. Ti/ Au Lift -off & W-Etch Ti/Au Ti/Au BCB W W Dielectric Dielectric Dielectric Dielectric Epi-wafer Epi-wafer < New Triple Gate Process Using High Temp. Sputter & BCB Planarization > 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  8. 30nm In 0.7 GaAs HEMT’s : DC I-V 30nm In 0.7 GaAs HEMT’s : DC I-V < L side-etch = 50nm & No I nP Etch > < L side-etch = 50nm & I nP Etch> V g s : 0 . 2 V t o - 1 . 2 V i n - 0 . 2 V s t e p V g s : 0 . 3 V t o - 0 . 5 V i n - 0 . 1 V s t e p 1 2 0 0 8 0 0 Schottky on I nP/ I nAlAs Schottky on I nAlAs (10nm ) mm] mm] (4/ 10nm) / / mA mA 6 0 0 4 0 0 [ [ s s d d I I 0 0 0 . 0 1 . 0 2 . 0 0 . 0 1 . 0 2 . 0 V d s [ V ] V d s [ V ] = > V th = -0.85V & G m,max = 1.75S/ mm = > V th = -0.3V & G m,max = 1.69S/ mm = > High Short channel effect = > Low Short channel effect G m / G ds = 3.89 @ G m,max Bias Point G m / G ds = 10.6 @ G m,max Bias Point 1 st Korea-US Nano Forum InGaAs Nano HEMTs RF Characteristics of 30nm In 0.7 GaAs HEMT’s RF Characteristics of 30nm In 0.7 GaAs HEMT’s < Best f T Charateristics > < f T versus Gate Bias > � f T = 421GHz at V gs / V ds = -0.15 / 1.05V 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  9. Performances of SNU InP Nano-HEMT’s Performances of SNU InP Nano-HEMT’s < f T versus L g > 1 ⋅ v = π f sat T 2 L G , eff L G reduction ⇒ decrease of τ transit ⇒ increase of f T SNU I nGaAs Nano-HEMT ( 2 0 (2003) 0 2 ) � f T = 250GHz for L g =60nm ( 2 � f T = 305GHz for L g =50nm 0 0 1 ) � f T = 371GHz for L g =40nm � f T = 421GHz for L g =30nm 1 st Korea-US Nano Forum InGaAs Nano HEMTs Over 110GHz Broadband Distributed Amplifier Over 110GHz Broadband Distributed Amplifier Output+ V D - Chip size:1.5X0.7mm 2 - Output+ V D Unit cell I nput+ V G1 V G2 < Schematic of distributed amplifier > V G2 I nput+ V G1 < Photograph of distributed amplifier > • Broadband distributed amplifier with 60nm InGaAs Nano-HEMT • The average gain at 1~110GHz is about 6.6 dB. • S 11 < -11 dB, S 22 < -4 dB < Measured S-parameter > 1 st Korea-US Nano Forum InGaAs Nano HEMTs

  10. RTD & HEMT Digital IC – 20Gbps MOBILE RTD & HEMT Digital IC – 20Gbps MOBILE RTD HEMT BCB Current Density(kA/cm 2 ) 1000 PVCR ~ 9 G m ~ 1.1 S / mm 100 J peak > 5.5x10 4 A/cm 2 800 f T = 180GHz 50 Chip size : 0.75X0.68mm 2 I DS [mA/mm] 600 0 400 250 mV P-P -50 200 -100 0 50 -1.0 -0.5 0.0 0.5 1. 0.0 0.5 1.0 1.5 psec 0 Voltage [V] V S [V] D < RTD I-V Curve > < HEMT I-V Curve : L g =100nm > 20Gbps 2 31 -1 PRBS Output Signal 1 st Korea-US Nano Forum InGaAs Nano HEMTs Summary Summary � Nano Patterning Method beyond Lithography Limit - Sidewall Process / Resist Flowing / Sloped Etch By RIE-Lag � 30nm In 0.7 GaAs Nano-HEMT - Sidewall Process + Triple Gate Process Using BCB Planarization - G m,max = 1.75S/mm & f T = 421GHz � Application of Developed InGaAs Nano-HEMT Device - 110GHz Wideband Distributed Amplifier (DA) MMIC : B-W > 110GHz - MOBILE IC based on RTD & HEMT Integration > 20Gbps � In future, the high speed characteristics of InGaAs nano-HEMT are to be enhanced with nano-technology [reduction of gate length], and ultra-high-speed ICs are to be implemented with nano-HEMTs. 1 st Korea-US Nano Forum InGaAs Nano HEMTs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend