high aspect ratio i ngaas finfets with sub 20 nm fin width
play

High aspect-ratio I nGaAs FinFETs with sub-20 nm fin width Alon - PowerPoint PPT Presentation

High aspect-ratio I nGaAs FinFETs with sub-20 nm fin width Alon Vardi, Jianqiang Lin, Wenjie Lu, Xin Zhao and Jess A. del Alamo Microsystems Technology Laboratories, MIT June 15, 2016 Sponsors: DTRA (HDTRA 1-14-1-0057), NSF E3S STC (grant


  1. High aspect-ratio I nGaAs FinFETs with sub-20 nm fin width Alon Vardi, Jianqiang Lin, Wenjie Lu, Xin Zhao and Jesús A. del Alamo Microsystems Technology Laboratories, MIT June 15, 2016 Sponsors: DTRA (HDTRA 1-14-1-0057), NSF E3S STC (grant #0939514) Lam Research

  2. Outline • Motivation • Process technology • Electrical characteristics • Late news • Conclusions 2

  3. I nGaAs planar Quantum-Well MOSFETs MIT MOSFETs del Alamo, J-EDS 2016 • Superior electron transport properties in InGaAs • InGaAs planar MOSFET performance exceeds that of High Electron Mobility Transistors (HEMT) 3

  4. I nGaAs planar Quantum-Well MOSFETs - short-channel effects t c =12 nm 400 350 S min (mV/dec) t c ↓ 300 250 V ds =0.5 V 200 150 3 nm 100 0.01 0.1 1 10 L g ( µ m) Lin, IEDM 2014 • Short-channel effects limit scaling to L g ~ 40 nm • 3D transistors required for further scaling 4

  5. FinFETs Intel Si Trigate MOSFETs • FinFETs are use in modern state-of-the-art technologies • Good balance of SCE and high ON current per footprint 5

  6. I nGaAs FinFETs W f ~50 nm W f ~30 nm Thathachary, VLSI 2015 Waldron, VLSI 2014 W f ~50 nm Kim, TED 2014 Radosavljevic ,IEDM 2011 Kim, IEDM 2013 • Demonstrations to date: W f ≥ 25 nm, AR c ≤ 1 6

  7. Goal: Sub-20 nm W f Self-aligned I I I -V FinFETs High -K HSQ SiO 2 AR c = H c /W f L g W/Mo AR f = H f /W f cap W f channel H c H f InAlAs • Deeply scaled fin width, gate length and gate oxide • High channel to fin width aspect ratio (AR c ) • Self-aligned contacts • CMOS-compatible processes and materials in front- end 7

  8. Fin definition: Dry etch + Digital etch 170 nm 25 nm 100 nm • BCl 3 /SiCl 4 /Ar RIE of InGaAs nanostructures with smooth, vertical sidewalls and high 8 nm aspect ratio (>10) • Digital etch (DE) : self-limiting O 2 plasma oxidation + H 2 SO 4 30 nm oxide removal 8

  9. Device fabrication 30 nm In 0.53 Ga 0.47 As, Si doped 3e19 cm -3 4 nm InP stopper 40 nm In 0.53 Ga 0.47 As, undoped • Highly doped cap 5 nm In 0.52 Al 0.48 As • 40 nm thick channel layer Si δ -Doping: 4e12 cm -2 • Delta doping underneath In 0.52 Al 0.48 As buffer InP semi insulating substrate 9

  10. Device fabrication W f direction L g direction Sputtered W/Mo contact o CVD SiO 2 hard mask SiO 2 o W/Mo cap channel InAlAs 10

  11. Device fabrication L g direction Sputtered W/Mo contact W f direction o CVD SiO 2 hard mask o SiO 2 35 nm L g Gate lithography o W/Mo Gate recess (Dry): o cap SiO 2 /W/Mo SiO 2 channel Active area definition o W/Mo InAlAs 11

  12. Device fabrication L g direction Sputtered W/Mo contact W f direction o CVD SiO 2 hard mask o SiO 2 35 nm L g Gate lithography o W/Mo Gate recess (Dry): o cap SiO 2 /W/Mo SiO 2 channel Active area definition o W/Mo Gate recess (Wet): Cap o etch InAlAs L g 60 nm SiO 2 W/Mo InP InGaAs 20 nm 12

  13. Device fabrication HSQ Sputtered Mo contact o CVD SiO 2 hard mask o Gate lithography o Gate recess (Dry): o H c SiO 2 /W/Mo H f Active area definition o Gate recess (Wet): Cap 100 nm o etch Fin Lithography o Fin etch o 13

  14. Device fabrication HSQ Sputtered W/Mo contact o CVD SiO 2 hard mask o Gate lithography o Gate recess (Dry): o H c SiO 2 /W/Mo H f Active area definition o 100 nm Gate recess (Wet): Cap o etch Fin lithography o Fin etch o Mo Digital etching o High-k/Mo ALD gate dielectric o HSQ deposition Mo gate sputtering 20 nm o • Double gate FinFET 14 • Al 2 O 3 /HfO 2 , EOT = 1 nm

  15. Device fabrication Sputtered W/Mo contact o CVD SiO 2 hard mask o Gate lithography o Gate recess (Dry): o SiO 2 /W/Mo Active area definition o Gate recess (Wet): Cap o etch Via Fin Lithography o Fin etch o SiO 2 Digital etching o ALD gate dielectric o deposition Gate hat Mo gate sputtering o Gate head photo and o pattern • Fin pitch 200 nm ILD1 deposition o Via opening o Pad formation o • 10-50 fins/device 15

  16. Long channel characteristics, W f = 22 nm, L g = 2 μ m Al 2 O 3 /HfO 2 1E-4 V GS = 0.75 V 25 EOT = 1 nm V DS =500 mV 1E-5 20 50 mV 1E-6 15 I d [A/ µ m] I d [ µ A/ µ m] 1E-7 0.5 V 10 1E-8 S lin =68 mV/dec 5 DIBL~0 1E-9 0 V 0.25 V 1E-10 0 -0.2 0.0 0.2 0.4 0.6 0.8 0.0 0.1 0.2 0.3 0.4 0.5 V GS [V] V DS [V] • S lin =68 mV/dec • Negligible DIBL • Good electrostatic control over dry etched sidewalls 16

  17. Short channel characteristics, W f = 22 nm, L g = 30 nm 1200 V GS = 0.75V 1000 1600 0.5 1000 800 1200 I d [ µ A /µ m] g m [ µ S /µ m ] 800 I d [ µ A /µ m] 600 0.25 600 800 400 V DS =500mV H c 400 0 400 200 W f =22 nm 200 -0.25 L g =30 nm 0 -0.5 0 0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 V GS [V] V DS [V] 1E-3 V DS =500 mV Current normalized 1E-4 50 mV by 2xH c 1E-5 170 I d [A /µ m] DIBL=220 mV/V • AR c ~2 1E-6 S=140 mV/dec • g m,max = 1.4 mS/ µ m at W f =22 nm 1E-7 L g =30 nm V DS =0.5 V 1E-8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 • R on =170 Ω ∙ µ m V GS [V] 17

  18. Most aggressively scaled device, W f = 7 nm, L g = 20 nm V GS = 0.75 V 40 V DS =500 mV W f =7 nm 1E-5 L g =20 nm 0.5 30 50 mV I d [ µ A /µ m] 1E-6 S=120 mV/dec I d [A /µ m] DIBL~150 20 1E-7 0.25 1E-8 10 0 -0.25 1E-9 0 1E-10 0.0 0.2 0.4 0.6 0.8 1.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V DS [V] V GS [V] • AR c ~6 • Poor drive current  Increased line edge roughness for W f <10 nm 18

  19. L g and W f scaling g m,max at V DS =0.5 V 1600 1200 W f =22 nm 800 400 1600 0 1200 W f =17 nm 800 g m [ µ S/ µ m] 400 1600 0 1200 W f =12 nm 800 400 1600 0 W f =7 nm 1200 800 400 0 10 100 1000 L g [nm] • L g ↓  g m ↑ • W f ↓  g m ↓ 19

  20. L g and W f scaling S sat at V DS =0.5 V g m,max at V DS =0.5 V 200 1600 W f =22 nm 150 1200 W f =22 nm 100 800 400 50 1600 0 200 0 W f =17 nm 1200 W f =17 nm 150 800 g m [ µ S/ µ m] 400 100 S sat [mV/dec] 1600 0 50 1200 W f =12 nm 200 0 800 W f =12 nm 400 150 1600 0 100 W f =7 nm 1200 50 800 400 200 0 W f =7 nm 0 150 10 100 1000 L g [nm] 100 50 • L g ↓  g m ↑ 0 10 100 1000 • W f ↓  g m ↓ L g [nm] • W f ↓  L g @ onset of SCE ↓ 20

  21. L g and W f scaling I on at I off =100 nA/ μ m g m,max at v DS =0.5 V S sat at V DS =0.5 V c 200 1600 200 W f =22 nm W f =22 nm 150 1200 W f =22 nm 150 c 800 100 100 400 50 50 I off =100 nA/ µ m 1600 0 200 0 c 200 0 W f =17 nm W f =17 nm 1200 150 W f =17 nm 150 c 800 S min [mV/dec] 100 g m [ µ S/ µ m] 400 50 100 I on [ µ A/ µ m] 1600 0 200 0 50 W f =12 nm 1200 W f =12 nm 150 200 0 c 800 100 W f =12 nm 150 400 50 c 1600 0 200 0 100 W f =7 nm W f =7 nm 1200 150 50 800 100 50 0 400 50 W f =7 nm 40 0 0 10 100 1000 30 10 100 1000 L g [nm] L g [nm] 20 10 • L g ↓  g m ↑ 0 10 100 1000 L g [nm] • W f ↓  g m ↓ • W f ↓  L g @ max I on ↓ • W f ↓  L g @ onset of SCE ↓ 21

  22. ON resistance scaling 4000 W f =7 nm 3500 3000 12 R on [ Ω - µ m] 2500 2000 17 1500 1000 22 500 0 0 100 200 300 400 500 L g [nm] • W f ↓  R on ↑ • For all W f , R sd =100 Ω ∙ µ m • Extremely low series resistance due to contact first and self-aligned approach 22

  23. V T rolloff 0.8 0.6 0.4 V T [V] 0.2 0.0 -0.2 -0.4 W f =7 nm W f =12 nm W f =22 nm W f =17 nm 0 400 800 0 400 800 0 400 800 0 400 800 L g [nm] • W f ↓  V T ↑  delta doping, quantization • W f ↓  V T rolloff ↑  line edge roughness ? A. Vardi, IEDM 2015 23

  24. Benchmark Physical g m : W F normalized by gate periphery 2.0 0.18 Si FinFETs H c 5.3 0.23 0.66 4.3 1.5 1 0.57 g m [mS/ µ m] 1.0 0.63 0.6 0.8 0.5 InGaAs FinFETs 0.0 0 20 40 60 H C W f [nm] W f • g m of Si ~ g m of III-V • III-V FinFET AR c ≤ 1 24

  25. Benchmark Physical g m : W F normalized by gate periphery 2.0 0.18 Si FinFETs H c 5.3 0.23 0.66 4.3 1.5 1 0.57 g m [mS/ µ m] 1.8 MIT 2.3 InGaAs 1.0 FinFETs 0.63 3.3 0.6 0.8 0.5 5.7 InGaAs FinFETs 0.0 0 20 40 60 H C W f [nm] W f Our results: • AR c >1 for the first time in III-V • Sub-20 nm W f • W f ↓  g m ↓ 25

  26. Benchmark Footprint g m : Physical g m : normalized by fin width 2.0 20 0.18 Si FinFETs 5.3 W f 5.3 0.23 0.66 Si FinFETs 4.3 1.5 15 4.3 1 g m /W f [mS/ µ m] 0.57 g m [mS/ µ m] 1.8 MIT 2.3 InGaAs 1.0 10 FinFETs InGaAs FinFETs 0.63 3.3 3.3 0.6 0.5 0.8 5 1 0.66 2.31.8 5.7 0.18 0.23 5.7 InGaAs FinFETs 0.57 0.63 0.6 0.8 0.0 0 0 20 40 60 0 20 40 60 W f [nm] W f [nm] For g m /W f : • Si >> III-V • MIT FinFETs > all other III-V  good use of sidewall conductance  Our results improve the state-of-art 26

  27. Post-submission results V DS =500 mV V GS =-0.5 to 0.75 -4 500 10 Δ V GS = 0.25 V 50 mV I d 400 -6 10 S=100 mV/dec I d [ µ A/ µ m] I [A/ µ m] 300 DIBL=90 mV/V -8 10 200 -10 10 I g 100 -12 10 0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 V GS [V] V DS [V] 1000 g m max =0.9 mS/ μ m 800 V DS =500 mV W f =7 nm g m [ µ S/ µ m] 600 L g =30 nm 400 50 mV EOT=0.6 nm (HfO 2 ) 200 0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 V GS [V] 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend