digital etch for ingasb p channel finfets with 10 nm fin
play

Digital Etch for InGaSb p-Channel FinFETs with 10-nm Fin Width - PowerPoint PPT Presentation

Digital Etch for InGaSb p-Channel FinFETs with 10-nm Fin Width Wenjie Lu and Jess A. del Alamo Massachusetts Institute of Technology CSW, May 30, 2018 Sponsors: KIST, SRC, DTRA, Lam Research Acknowledgment: KIST, NRL, Sandia, MTL, SEBL


  1. Digital Etch for InGaSb p-Channel FinFETs with 10-nm Fin Width Wenjie Lu and Jesús A. del Alamo Massachusetts Institute of Technology CSW, May 30, 2018 Sponsors: KIST, SRC, DTRA, Lam Research Acknowledgment: KIST, NRL, Sandia, MTL, SEBL

  2. Outline • Motivation • InGaSb Digital Etch • InGaSb p‐channel FinFET • Off‐state Current • Conclusions 2

  3. Reported Mobility in InGaSb High electron mobility 3 del Alamo, Nature 2011

  4. Reported Mobility in InGaSb InGaSb CMOS High hole mobility & strain effect 4 del Alamo, Nature 2011

  5. Digital Etch Ramesh, IEDM 2017 Zhao, IEDM 2017 Kilpi, IEDM 2017 Vardi, IEDM 2017 Digital Etch: standard in InGaAs VNW/FinFET process 5

  6. Digital Etch in InGaSb Fin etch Oxidation Oxide Etch O 2 plasma H 2 SO 4 :H 2 O O 3 HCL:H 2 O H 2 O 2 6

  7. Key: Water Damages Antimonides Dip in DI water for 2 min  Must remove water 7 Lu, EDL 2017

  8. Alcohol-based Treatment After RIE 10% HCl:IPA 2 min No sidewall damage Lu, EDL 2017 8

  9. Digital Etch in InGaSb Fin etch Oxidation Oxide Etch O 2 plasma HCl:IPA O 3 H 2 O 2 9

  10. O 2 Plasma + HCl:IPA 3 cycles 10 cycles (r = 1 nm/cycle) (r = 0.2 nm/cycle) After RIE HSQ 10 nm InAs InGaSb 25 nm 19 nm 16 nm AlGaSb r (III-Sb) ↓ after 3 cycles r (III-As) > r (III-Sb) 10

  11. Oxidation of GaSb • In air: ‒Ga 2 O 3 , Sb 2 O 3 • In strong oxidation agents: ‒Ga 2 O 3 , Sb 2 O 3 ‒Sb 2 O 5 (insoluble in common aqueous acid/alkali) Must avoid formation of Sb 2 O 5 11 Liu, JVST B. 2002

  12. Experiments of InGaSb DE RT O 2 Best results: RT O 2 atmosphere + HCl:IPA 12

  13. RT O 2 + HCl:IPA 2 cycles 4 cycles r = 2 nm/cycle r = 2 nm/cycle No DE HSQ InAs 25 nm 17 nm 9 nm InGaSb AlGaSb • Stable etching rate • Identical etch rate for InAs and antimonides 13

  14. InGaSb p-Channel FinFETs Fin InAs/InAsSb InAlSb Heterostructure grown by KIST 14

  15. InGaSb p-Channel FinFETs G3 FinFET • 3 Generations ‒G1: No sidewall treatment ‒G2: HCl:IPA treatment ‒G3: HCl:IPA + digital etch Minimum W f = 10 nm Lu, IEDM 2017 15

  16. Minimum-size Devices G1 G2 G3 W f = 30 nm, L g = 100 nm W f = 18 nm, L g = 20 nm W f = 10 nm, L g = 20 nm 200 200 V GS = 0.5 V to -1 V 200 V GS = 1 V to -1 V V GS = 1 V to -1 V 150 150 150 -I D (  A/  m) -I D (  A/  m) -I D (  A/  m) 100 100 100 50 50 50 0 0 0 -0.8 -0.4 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 V DS (V) V DS (V) V DS (V) Lu, IEDM 2015 Lu, CSW 2017 Lu, IEDM 2017 16

  17. Off-state Current • G2: W f = 20 nm, L g = 100 nm 2 fins Same total mesa width 200 150 W m -I D (  A) 1 fin 100 50 0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 V DS (V) Presence of leakage paths outside the fins 17

  18. Off-state Current • G2: V gt = 0.6 V, V ds = ‐ 50 mV HSQ 10 8 InGaSb W m -I D  L G /W m (nA) 6 ~W f 4 AlGaSb 2 0 0 50 100 W f (nm) 18

  19. Off-state Current • G3: W f = 20 nm, L g = 1 µm, V DS = ‐50 mV 2 10 0 DE cycle 1 10 -I D (  A/  m) 0 10 1 DE cycle -1 10 -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) 1 DE cycle significantly improves off current More improvement needed 19

  20. Benchmark Gen 3 800 1000 Gen 3 DE 600 g m /W f (  S/  m) g m /W f (  S/  m) Gen 2 400 100 HCl:IPA FinFETs Gen 1 200 Gen 2 Planar Gen 1 ddd 10 0 0 500 1000 1500 2000 2500 Planar 0 50 100 150 200 S lin (mV/dec) W f (nm) ddd g m /W f = 704 μS/μm at W f = 10 nm 20

  21. Conclusion • Digital Etch ‒ Alcohol‐based HCl treatment ‒ O 2 for oxidation at RT ‒ Compatible to InGaSb and InAs • InGaSb p‐Channel FinFETs ‒ Minimum W f = 10 nm, L g = 20 nm ‒ HCl:IPA and DE improves I off ‒ Record device performance 21

  22. Off-state Current • G3: W f = 20 nm, L g = 1 µm, V DS = ‐50 mV 2 10 0 DE cycle 1 10 I D (  A/  m ) 4 DE cycle 0 10 1 DE cycle -1 10 -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) 22

  23. Off-state Current 3 DE cycle 10 min air exposure 2 10 0 DE cycle 1 10 I D (  A/  m ) 4 DE cycle 0 10 1 DE cycle -1 10 -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) • Buffer is damaged after multiple DE cycles • Al 0.93 Ga 0.07 Sb is too reactive 23

  24. Off-state Current • G2: V gt = 0.6 V, V ds = ‐ 50 mV G2 HSQ HCl:IPA 1 min 0.2 InGaSb -I D  L g (  A  m) 0.1 AlGaSb 0.0 0 20 40 60 80 100 W f (nm) HCl:IPA  Super-linear dependency on W f 24

  25. Off-state Current • G3: V gt = 0.6 V, V ds = ‐ 50 mV G2 HCl:IPA 1 min G3 0.2 HCl:IPA 1 min -I D  L g (  A  m) + 1 DE 0.1 0.0 0 20 40 60 80 100 W f (nm) + 1 DE  More linear dependency on W f 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend