ingasb p channel self aligned finfets with 10 nm fin
play

InGaSb p-Channel Self-Aligned FinFETs with 10 nm Fin-Width Using - PowerPoint PPT Presentation

InGaSb p-Channel Self-Aligned FinFETs with 10 nm Fin-Width Using Sb-Compatible Digital Etch W. Lu 1 , I. P. Roh 2 , D.-M. Geum 2 , S.-H. Kim 2 , J. D. Song 2 , L. Kong 1 , and J. A. del Alamo 1 1 Microsystems Technology Laboratories, MIT


  1. InGaSb p-Channel Self-Aligned FinFETs with 10 nm Fin-Width Using Sb-Compatible Digital Etch W. Lu 1 , I. P. Roh 2 , D.-M. Geum 2 , S.-H. Kim 2 , J. D. Song 2 , L. Kong 1 , and J. A. del Alamo 1 1 Microsystems Technology Laboratories, MIT Sponsors: 2 Korea Institute of Science and Technology DTRA December 5, 2017 KIST Lam Research SRC

  2. Outline  Motivation  Key technology: III-Sb-compatible digital etch  InGaSb p-channel FinFET fabrication  Electrical characteristics  Conclusions 2

  3. A Case for III-Sb Electron mobility Hole mobility in QW-FETs Properties of III-Sb: • High µ n InSb • High µ p • Strong strain effect • E g engineering GaSb • Applications in photonics, etc. [Miki, 1975] [Kawashima and Kataoka, JJAP 1979] [del Alamo, Nature, 2011] 3

  4. III-Sb Transistor Research InGaAs (IEEE) 4

  5. III-Sb Transistor Research InGaAs Gu, IEDM 2011 Waldron, VLSI 2016 (IEEE) Zhao, IEDM 2013 Zota, IEDM 2016 Vardi, IEDM 2015 Vardi, EDL 2016 5 Zhou, VLSI 2016

  6. III-Sb Transistor Research InGaAs (IEEE) III-Sb transistors (All publications) 6

  7. III-Sb Transistor Research InGaAs InAs/AlSb/GaSb HEMT B. Bennett, JVST ’00 InGaSb p-SOI (IEEE) Nishi, VLSI ’15 InAs/GaSb CMOS Goh, IEDM ’15 III-Sb transistors InSb QW p-FET (All publications) InGaSb p-FinFET Radosavljevic, IEDM ’08 Lu, IEDM ’15 InAs/GaSb TFET Memišević , EDL ’16 InGaSb p-MOSFET Nainani, IEDM ’10 7

  8. Challenges: III-Sb Digital Etch W F = 5 nm D = 5 nm D = 8 nm [Vardi, IEDM 2017] [Lu, EDL, 2017] Digital etch: key of sub-10 nm InGaAs transistors 8

  9. Challenges: III-Sb Digital Etch XSEM of InGaSb FinFET [Lu, IEDM, 2015] • W f limited by EBL and RIE 9

  10. Challenges: III-Sb Digital Etch XSEM of InGaSb FinFET W f = 30 nm, L g = 100 nm 300 V GS = 0.5 V to -3.5 V I D ( µ A/ µ m) 200 100 0 [Lu, IEDM, 2015] -0.8 -0.4 0.0 • W f limited by EBL and RIE V DS (V) • Suffers from large off current 10

  11. HCl Digital Etch on III-Sb • Previous research: HCl cleans GaSb surface GaSb MOSCAPs [Nainani, JAP 2011] As-Is HCl 11

  12. HCl Digital Etch on III-Sb • Previous research: HCl cleans GaSb surface GaSb MOSCAPs 3 [Nainani, JAP 2011] 1x10 V ds = -1.05 V [Lu, IEDM, 2015] As-Is HCl I D ( µ A/ µ m) after HCl 2 1x10 1 1x10 -3 -2 -1 0 1 V GS (V) FinFETs: only mild improvement of off current 12

  13. Issue with HCl Digital Etch • HCl etches the InGaSb sidewall After RIE 1% HCl 30s 13

  14. Issue with HCl Digital Etch • HCl etches the InGaSb sidewall After RIE 1% HCl 30s DI water 2 min Water-based HCl problematic for III-Sb DE 14

  15. Alcohol-based Digital Etch After RIE 10% HCl:IPA 2 min 20 nm 20 nm [Lu, EDL, 2017] • Self-limiting process • No damage on the sidewall 15

  16. Alcohol-based Digital Etch First digital etch on III-Sb: HCl:IPA + O 2 plasma 60 D = 20 nm D = 20 nm VNW Radius (nm) 10 nm 40 20 0 0 2 4 6 Digital Etch Cycles 16

  17. Alcohol-based Digital Etch First digital etch on III-Sb: HCl:IPA + O 2 plasma 60 D = 20 nm D = 20 nm VNW Radius (nm) 40 20 2 nm/cycle 0.6 nm/cycle 0 0 2 4 6 Digital Etch Cycles Etch rate ↓ after multiple DE cycles 17

  18. Alcohol-based Digital Etch 3 cycles 10 cycles No DE r = 1 nm/cycle r = 0.2 nm/cycle HSQ InAs InGaSb 25 nm 19 nm 16 nm AlGaSb • r (III- Sb) ↓ after 3 cycles • r (III-As) >> r (III-Sb) 18

  19. Sb-compatible Digital Etch Oxidation of GaSb: • In air: ‒ Ga 2 O 3 , Sb 2 O 3 [Liu, JVST B. 2002] 19

  20. III-Sb-compatible Digital Etch Oxidation of GaSb: • In air: ‒ Ga 2 O 3 , Sb 2 O 3 • In strong oxidation agents: ‒ Ga 2 O 3 , Sb 2 O 3 , Sb 2 O 5 (insoluble in aqueous acid/alkali) [Liu, JVST B. 2002] DE = oxidation + dissolution, both critical for III-Sb! 20

  21. III-Sb-compatible Digital Etch Survey of digital etch combinations: Best results: RT O 2 atmosphere + HCl:IPA 21

  22. III-Sb-compatible Digital Etch O 2 oxidation + HCl:IPA, IPA rinsing 2 cycles 4 cycles No DE r = 2 nm/cycle r = 2 nm/cycle HSQ InAs 25 nm 17 nm 9 nm InGaSb AlGaSb r (III-As) = r (III-Sb) 22

  23. InGaSb FinFETs TEM Heterostructure (MBE at KIST) p+ cap Composite cap 6 nm -1.1% strain InAlSb H c = 23 nm 23 nm Graded buffer InGaSb AlGaSb 20 nm • Channel μ p = 1175 cm 2 /V∙s • Buffer/channel resistivity ~ 10 9 23

  24. InGaSb FinFET Process • Ni Ohmic contact HSQ • SiO 2 spacer • Gate recess (dry + wet) InGaSb • Fin RIE • Digital etch Al 2 O 3 /Al • Al 2 O 3 /Al Gate stack • Via + metal 24

  25. Ohmic Contacts Ni contacts, 350 °C RTA, 3 min × 10 4 4 4 10 R Total ⋅ W (Ω⋅µ m ) Mo N a = 1 ⋅ 10 19 cm -3 R c = 93 Ω⋅µ m 3 R c ( Ω⋅µ m ) 3 10 W 2 Ni [MIT '15] 2 10 N a = 3 ⋅ 10 19 cm -3 1 Ni R c = 22 Ω⋅µ m [Guo, EDL, 2015] 1 10 0 0 100 200 300 400 0 5 10 15 20 L d ( µ m ) RTA Temp ( ° C ) R c = 22 Ω∙μ m  4x reduction of R c from 2015 FinFETs 25

  26. Fin Etch BCl 3 /N 2 13.5:5.5, 250°C BCl 3 /Ar/SiCl 4 3:11:0.4, 250°C [Lu, IEDM 2015] This work 50 nm InAs GaSb High-quality simultaneous InAs and GaSb etching 26

  27. InGaSb FinFET Process Finished devices • 3.5 nm Al 2 O 3 gate dielectric • Final FGA anneal at 150 ° C for 3 min 27

  28. InGaSb FinFET Process HSQ 10 nm 10 nm 3.5 nm 23 nm InGaSb Al 2 O 3 AlGaSb 84° 50 nm • Narrowest W f = 10 nm • Fin AR = 2.3 28

  29. Electrical Characteristics W f = 10 nm, L g = 20 nm, N f = 1 V DS = -0.5 V 2 200 10 V GS = -1 V to 1 V in 0.4 V step V DS = -50 mV 200 150 V DS = -0.5 V I D ( µ A/ µ m ) I D ( µ A/ µ m ) 1 10 150 g m ( µ S/ µ m ) 100 100 0 10 S min = 50 V DS = -50 mV 50 260 mV/dec -1 0 10 0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0 V GS (V) V DS (V) V GS (V) • S ~ 260 mV/dec • g m,max = 160 μ S/ μ m • Single fin device: current fluctuations 29

  30. Electrical Characteristics W f = 10 nm, L g = 1 μ m, N f = 100 V GS = -1 V to 1 V in 0.4 V step 0 10 V DS = -0.5 V 4 V DS = -50 mV I D ( µ A/ µ m ) 3 I D ( µ A/ µ m ) -1 10 2 -2 10 S min = 1 290 mV/dec 0 -3 10 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 -0.5 0.0 0.5 V DS (V) V GS (V) 30

  31. Electrical Characteristics W f = 10 nm, L g = 1 μ m, N f = 100 W f = 30 nm, L g = 1 μ m V GS = -1 V to 1 V in 0.4 V step 12 4 [Lu, IEDM, 2015] I D ( µ A/ µ m ) 3 8 I D ( µ A/ µ m) 2 4 1 0 0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 V DS (V) V DS (V) Significant improvement over 1 st gen FinFETs 31

  32. g m Scaling W f = 26 nm W f = 18 nm 300 W f = 14 nm g m ( µ S/ µ m) W f = 10 nm 200 W f ↓ 100 0 100 1000 L g (nm) L g ↓  g m ↑ W f ↓  g m ↓ 32

  33. ON Resistance 10 W f = 26 → 10 nm 8 R f R on (k Ω⋅µ m) 6 4 2 R SD 0 0 20 40 60 80 100 120 L g (nm) 33

  34. ON Resistance 10 100 W f = 26 → 10 nm 8 R f R on (k Ω⋅µ m) R f (k Ω/฀ ) 6 10 4 -1 2 R SD 0 1 0 20 40 60 80 100 120 10 100 L g (nm) W f (nm) 34

  35. ON Resistance 10 10 100 W f = 26 → 10 nm 8 R SD (k Ω⋅µ m) R f R on (k Ω⋅µ m) R f (k Ω/฀ ) 6 1 10 4 -1 -1 2 R SD 0 0.1 1 0 20 40 60 80 100 120 10 100 10 100 L g (nm) W f (nm) W f (nm) R f and R SD ~ 1/W f 35

  36. V T Scaling W f = 26 nm W f = 18 nm 1.2 W f = 14 nm V T (V) W f = 10 nm 0.8 W f ↓ 0.4 0.0 10 100 1000 L g (nm) W f ↓  better V T roll-up 36

  37. Off-state Current W f = 20 nm, L g = 1 µm 2 10 0 DE cycle 1 10 I D ( µ A/ µ m ) 0 10 1 DE cycle -1 10 -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) 1 DE cycle significantly improves off current 37

  38. Off-state Current W f = 20 nm, L g = 1 µm 2 10 0 DE cycle 1 10 I D ( µ A/ µ m ) 4 DE cycle 0 10 1 DE cycle -1 10 -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) Device degrades after multiple DE cycles 38

  39. Off-state Current W f = 20 nm, L g = 1 µm 3 cycles of DE 2 10 InGaSb 0 DE cycle 1 10 I D ( µ A/ µ m ) 4 DE cycle 0 10 1 DE cycle -1 10 AlGaSb -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) • Buffer is damaged after multiple DE cycles 39

  40. Off-state Current Exposure in air W f = 20 nm, L g = 1 µm 3 cycles of DE after fin etch 2 10 InGaSb 0 DE cycle 1 10 I D ( µ A/ µ m ) 4 DE cycle 0 10 1 DE cycle -1 10 AlGaSb -2 10 -1.0 -0.5 0.0 0.5 1.0 V GS (V) • Buffer is damaged after multiple DE cycles • AlGaSb is very reactive 40

  41. Off-state Current 1 10 L g = 1 µm I D ( µ A/ µ m ) 0 W f = 100  14 nm 10 HSQ -1 10 InGaSb -2 10 AlGaSb -3 10 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V GS (V) 41

  42. Off-state Current 1 10 L g = 1 µm I D ( µ A/ µ m ) 0 W f = 100  14 nm 10 HSQ -1 10 InGaSb -2 10 AlGaSb AlGaSb No InGaSb channel -3 10 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V GS (V) Buffer leakage contributes substantially to off current 42

  43. Benchmark Normalized by conducting width This work 300 FinFETs 200 MIT CSW ’17 g m ( µ S/ µ m) Planar 100 MIT IEDM ’15 0 0 50 100 150 200 W f (nm) Record g m = 268 μS / μm at W f = 46 nm 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend