nonlinear stabilization when delay is a function of state
play

Nonlinear stabilization when delay is a function of state Miroslav - PowerPoint PPT Presentation

Nonlinear stabilization when delay is a function of state Miroslav Krstic Sontagfest , May 2011 The Sontag Army (the ISS/CLF Corps) Andy Teel Randy Freeman mk Zhongping Jiang Rodolphe Sepulchre Mrdjan Jankovic Dragan Nesic David Angeli


  1. Nonlinear stabilization when delay is a function of state Miroslav Krstic Sontagfest , May 2011

  2. The Sontag Army (the ISS/CLF Corps) Andy Teel Randy Freeman mk Zhongping Jiang Rodolphe Sepulchre Mrdjan Jankovic Dragan Nesic David Angeli Murat Arcak Daniel Liberzon Lars Gr¨ une Joao Hesphanha Frank Allgower Hiroshi Ito Michael Malisoff Frederic Mazenc Pierdomenico Pepe Iasson Karafyllis ...

  3. Outline • LTI systems with time-varying delay • nonlinear systems with state-dependent delay • happy birthday slide lkj

  4. LTI Systems w/ Constant Delay X ( t ) AX ( t )+ BU ( t − D ) ˙ = A - possibly unstable; D - arbitrarily large Assume: ( A , B ) controllable and matrix K found such that A + BK is Hurwitz.

  5. LTI Systems w/ Constant Delay X ( t ) AX ( t )+ BU ( t − D ) ˙ = Predictor-based control law: Z t � � t − D e A ( t − θ ) BU ( θ ) d θ e AD X ( t )+ U ( t ) K = � �� � X ( t + D ) � P ( t )

  6. Time-Varying Input Delay Basic idea introduced by Artstein (TAC, 1982) , but only conceptually (nor explicitly), for LT V systems with TV delays. Explicit design for LTI plants presented by Nihtila (CDC, 1991) , but no analysis of stability or of feasibility of the controller.

  7. Time-Varying Input Delay AX ( t )+ BU ( φ ( t )) X ( t ) ˙ = φ ( t ) = t − D ( t ) : = “delayed time” Predictor feedback � Z t � � � � � U ( θ ) φ − 1 ( t ) − t φ − 1 ( t ) − φ − 1 ( θ ) e A φ ( t ) e A � d θ U ( t ) = K X ( t )+ B φ ′ � φ − 1 ( θ )

  8. Need a Lyapunov functional. Construct one with a backstepping transformation of the actuator state : X ( φ − 1 ( θ ) � P ( θ ) � �� � Z θ � � � � � � U ( σ ) φ − 1 ( θ ) − t φ − 1 ( θ ) − φ − 1 ( σ ) e A φ ( t ) e A W ( θ ) = U ( θ ) − K � d σ X ( t )+ B φ ′ � φ − 1 ( σ ) φ ( t ) ≤ θ ≤ t

  9. Need a Lyapunov functional. Construct one with a backstepping transformation of the actuator state : X ( φ − 1 ( θ ) � P ( θ ) � �� � Z θ � � � � � � U ( σ ) φ − 1 ( θ ) − t φ − 1 ( θ ) − φ − 1 ( σ ) e A φ ( t ) e A W ( θ ) = U ( θ ) − K � d σ X ( t )+ B φ ′ � φ − 1 ( σ ) φ ( t ) ≤ θ ≤ t b φ − 1 ( θ ) − t Z t φ − 1 ( t ) − t e V ( t ) = X ( t ) T PX ( t )+ a � W ( θ ) 2 d θ � � φ ′ � φ − 1 ( t ) − t φ − 1 ( θ ) φ ( t )

  10. Theorem 1 ∃ G , g > 0 s.t. Z t Z 0 � � t − D ( t ) U 2 ( θ ) d θ ≤ G e − gt | X ( t ) | 2 + | X 0 | 2 + − D ( 0 ) U 2 ( θ ) d θ ∀ t ≥ 0 , , where G (but not g ) depends on the function D ( · ) .

  11. Conditions on the delay function D ( t ) = t − φ ( t ) : • D ( t ) ≥ 0 (causality); • D ( t ) is uniformly bounded from above (all inputs applied to the plant eventually reach the plant); • D ′ ( t ) < 1 (plant never feels input values that are older than the ones it has already felt— input signal direction never reversed ); • D ′ ( t ) is uniformly bounded from below (delay cannot disappear instantaneously, but only gradually).

  12. φ − 1 ( t ) > t > φ ( t ) Achilles heel: ! D ( t ) needs to be known sufficiently far in advance ⇒ method appears not to be usable for state-dependent delays

  13. Nonlinear systems with state-dependent delay (with Nikolaos Bekiaris-Liberis)

  14. • Control over networks • Driver reaction delay • Milling processes • Rolling mills • Engine cooling systems • Population dynamics

  15. Nonlinear Systems with State-Dependent Input Delay � � �� X ( t ) = f X ( t ) , U t − D ( X ( t )) ˙ Challenge: P ( t ) value of the state at the time when the control applied at t reaches the system = � � X t + D ( P ( t )) = Z θ f ( P ( s ) , U ( s )) P ( θ ) t − D ( X ( t )) ≤ θ ≤ t X ( t )+ 1 − ∇ D ( P ( s )) f ( P ( s ) , U ( s )) ds , = t − D ( X ( t ))

  16. Nonlinear Systems with State-Dependent Input Delay � � �� X ( t ) = f X ( t ) , U t − D ( X ( t )) ˙ Challenge: P ( t ) value of the state at the time when the control applied at t reaches the system = � � X t + D ( P ( t )) = Z θ f ( P ( s ) , U ( s )) P ( θ ) t − D ( X ( t )) ≤ θ ≤ t X ( t )+ 1 − ∇ D ( P ( s )) f ( P ( s ) , U ( s )) ds , = t − D ( X ( t ))

  17. Controller (possibly time-varying) U ( t ) = κ (( t + D ( P ( t )) , P ( t ))

  18. Example 1 (stabilizing, but not global even for linear systems) � t − X ( t ) 2 � X ( t ) = X ( t )+ U ˙ U ( θ ) = 0 , − X ( 0 ) 2 ≤ θ ≤ 0 . Simulations with input initial conditions For X ( 0 ) ≥ X ∗ = 1 √ 2 e = 0 . 43 , the controller never “kicks in” (dashed) 0.9 0.7 0.8 0.6 x ( t ) φ ( t ) 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0 0.1 −0.1 0 −0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 t t

  19. Result not global because of feasibility condition “delay rate < 1” To keep the prediction horizon finite and control bounded, the initial conditions and solu - tions must satisfy ∇ D ( P ( θ )) f ( P ( θ ) , U ( θ )) < c , for all θ ≥ − D ( X ( 0 )) , F c : for some c ∈ ( 0 , 1 ] . We refer to F 1 as the feasibility condition of the controller.

  20. !"#"$% !!!" , !!# (•+ $ ),&&' % ( " )&≤& $ &≤&0 .

  21. (local u.a.s. in sup -norm of U ) Theorem 2 ∃ ψ RoA ∈ K , ρ ∈ K C , and β ∈ K L s.t. ∀ initial cond. that satisfy | U ( θ ) | < ψ RoA ( c ) B 0 ( c ) : | X ( 0 ) | + sup − D ( X ( 0 )) ≤ θ ≤ 0 for some 0 < c < 1 , � � � � | U ( θ ) | ≤ β ρ | U ( θ ) | , c | X ( t ) | + | X ( 0 ) | + , t ∀ t ≥ 0 . sup sup , t − D ( X ( t )) ≤ θ ≤ t − D ( X ( 0 )) ≤ θ ≤ 0 If U is locally Lipschitz on the interval [ − D ( X ( 0 )) , 0 ) , there exists a unique solution to the closed-loop system with X Lipschitz on [ 0 , ∞ ) , U Lipschitz on ( 0 , ∞ )

  22. Assumption 1 D ∈ C 1 ( R n ; R + ) X = f ( X , ω ) is forward complete ˙ Assumption 2 X = f ( X , κ ( t , X )) is g.u.a.s. ˙ Assumption 3

  23. Lemma 1 (infinite -dimensional backstepping transformation of the actuator state) W ( θ ) = U ( θ ) − κ ( σ ( θ ) , P ( θ )) , t − D ( X ( t )) ≤ θ ≤ t , transforms the closed-loop system into the “target system” f ( X ( t ) , κ ( t , X ( t ))+ W ( t − D ( X ( t )))) X ( t ) ˙ = W ( t ) ∀ t ≥ 0 . = 0 , Lemma 2 (u.a.s. of target system) ∃ ρ ∗ ∈ K C , β 2 ∈ K L s.t., for all solutions satisfying F c for 0 < c < 1 ,     | W ( θ ) | β 2  ρ ∗ | W ( θ ) | , c | X ( t ) | +  | X ( 0 ) | +  , t ≤ sup sup  , t − D ( X ( t )) ≤ θ ≤ t − D ( X ( 0 )) ≤ θ ≤ 0

  24. ! ("#+#τ) " ("#+#τ) τ# ∈" [( ! ( " ),0] τ# ∈" [( ! ( " ),0] .

  25. %&+&"1 !!!" , !!# (•+ $ ),&&' % ( " )&≤& $ &≤&0 !"#"!$%"&$'($ )*+,-.'#$(-./&0'.+! .

  26. Lemma 3 (norm equivalence between the original system and target system) ∃ ρ 2 ∈ K C ∞ , α 9 ∈ K ∞ s.t., for all solutions satisfying F c for 0 < c < 1 , � � | U ( θ ) | α − 1 | W ( θ ) | | X ( t ) | + | X ( t ) | + ≤ sup sup 9 t − D ( X ( t )) ≤ θ ≤ t t − D ( X ( t )) ≤ θ ≤ t � � | W ( θ ) | ρ 2 | U ( θ ) | , c | X ( t ) | + | X ( t ) | + ≤ sup sup t − D ( X ( t )) ≤ θ ≤ t t − D ( X ( t )) ≤ θ ≤ t B around the origin and within the feasibility region) (finding a ball ¯ Lemma 4 ρ c ∈ K C ∞ s.t. F c ( 0 < c < 1 ) is satisfied by all solutions that satisfy ∃ ¯ | U ( θ ) | < ¯ ρ c ( c , c ) B ( c ) : | X ( t ) | + ∀ t ≥ 0 . ¯ sup t − D ( X ( t )) ≤ θ ≤ t (finding a ball B 0 of initial conditions s.t. all solutions are confined in ¯ B ⊂ F c ) Lemma 5 ∃ ψ RoA ∈ K s.t. for all initial conditions in B 0 ( c ) , the solutions remain in ¯ B ( c ) ⊂ F c for some 0 < c < 1 .

  27. Examples

  28. Example 2 Non -holonomic unicycle with D ( x , y ) = x 2 + y 2 A predictor-based version of Pomet’s (1992) time-varying controller: � 1 + 25cos ( 3 σ ( t )) 2 � ω − 5 P 2 cos ( 3 σ ( t )) − pq − Θ = − P + 5 Q ( sin ( 3 σ ( t )) − cos ( 3 σ ( t )))+ Q ω , v = where X cos ( Θ )+ Y sin ( Θ ) P = X sin ( Θ ) − Y cos ( Θ ) , Q = and the predictor is given by Z t σ ( s ) v ( s ) cos ( Θ ( s )) ds X ( t ) x ( t )+ = ˙ t − D ( x ( t ) , y ( t )) Z t σ ( s ) v ( s ) sin ( Θ ( s )) ds Y ( t ) y ( t )+ = ˙ t − D ( x ( t ) , y ( t )) Z t Θ ( t ) θ ( t )+ σ ( s ) ω ( s ) ds = ˙ t − D ( x ( t ) , y ( t )) σ ( t ) = t + D ( X ( t ) , Y ( t )) 1 σ ( s ) ˙ = 1 − 2 ( X ( s ) v ( s ) cos ( Θ ( s ))+ Y ( s ) v ( s ) sin ( Θ ( s )))

  29. Trajectory of the robot for t ∈ [0 , 500 ] 1 Trajectory of the robot for t ∈ [0 , 15 ] 15 0.8 10 y ( t ) y ( t ) 5 0.6 0 0.4 −5 0.2 −10 0 −15 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −20 −10 0 10 20 x ( t ) x ( t ) 10 9 8 D ( t ) 7 6 5 4 3 2 1 0 0 5 10 15 t Solid: with delay compensation; dashed: without.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend