nonlinear control lecture 12 nonlinear observers and
play

Nonlinear Control Lecture # 12 Nonlinear Observers and Output - PowerPoint PPT Presentation

Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization Local Observers x = f ( x, u ) , y = h ( x ) x = f ( x, u )


  1. Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  2. Local Observers x = f ( x, u ) , ˙ y = h ( x ) ˙ x = f (ˆ ˆ x, u ) + H [ y − h (ˆ x )] x = x − ˆ ˜ x ˙ x = f ( x, u ) − f (ˆ ˜ x, u ) − H [ h ( x ) − h (ˆ x )] We seek a local solution for sufficiently small � ˜ x (0) � Linearization at ˜ x = 0 : � ∂f ∂x ( x ( t ) , u ( t )) − H ∂h � ˙ x = ˜ ∂x ( x ( t )) x ˜ Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  3. Steady-state solution: 0 = f ( x ss , u ss ) , 0 = h ( x ss ) Assumption: given ε > 0 , there exist δ 1 > 0 and δ 2 > 0 such that � x (0) − x ss � ≤ δ 1 and � u ( t ) − u ss � ≤ δ 2 ∀ t ≥ 0 ⇒ � x ( t ) − x ss � ≤ ε ∀ t ≥ 0 A = ∂f C = ∂h ∂x ( x ss , u ss ) , ∂x ( x ss ) Assume that ( A, C ) is detectable. Design H such that A − HC is Hurwitz Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  4. Lemma 11.1 For sufficiently small � ˜ x (0) � , � x (0) − x ss � , and sup t ≥ 0 � u ( t ) − u ss � , t →∞ ˜ lim x ( t ) = 0 Proof � 1 ∂f f ( x, u ) − f (ˆ x, u ) = ∂x ( x − σ ˜ x, u ) dσ ˜ x 0 � f ( x, u ) − f (ˆ x, u ) − A ˜ x � = � 1 � � � ∂f x, u ) − ∂f ∂x ( x, u ) + ∂f ∂x ( x, u ) − ∂f � � � ∂x ( x − σ ˜ ∂x ( x ss , u ss ) dσ ˜ x � � � � 0 ≤ L 1 ( 1 2 � ˜ x � + � x − x ss � + � u − u ss � ) � ˜ x � Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  5. x � ≤ L 2 ( 1 � h ( x ) − h (ˆ x ) − C ˜ 2 � ˜ x � + � x − x ss � ) � ˜ x � ˙ x = ( A − HC )˜ ˜ x + ∆( x, u, ˜ x ) x � 2 + k 2 ( ε + δ 2 ) � ˜ � ∆( x, u, ˜ x ) � ≤ k 1 � ˜ x � P ( A − HC ) + ( A − HC ) T P = − I x T P ˜ V = ˜ x x � 2 + c 4 k 1 � ˜ x � 3 + c 4 k 2 ( ε + δ 2 ) � ˜ ˙ x � 2 V ≤ −� ˜ ˙ V ≤ − 1 x � 2 , x � ≤ 1 c 4 k 2 ( ε + δ 2 ) ≤ 1 3 � ˜ for c 4 k 1 � ˜ and 3 3 For sufficiently small � ˜ x (0) � , ε , and δ 2 , the estimation error converges to zero as t tends to infinity Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  6. The Extended Kalman Filter x = f ( x, u ) , ˙ y = h ( x ) ˙ x = f (ˆ ˆ x, u ) + H ( t )[ y − h (ˆ x )] x = x − ˆ ˜ x ˙ ˜ x = f ( x, u ) − f (ˆ x, u ) − H ( t )[ h ( x ) − h (ˆ x )] Expand the right-hand side in a Taylor series about ˜ x = 0 and evaluate the Jacobian matrices along ˆ x ˙ x = [ A ( t ) − H ( t ) C ( t )]˜ ˜ x + ∆(˜ x, x, u ) A ( t ) = ∂f C ( t ) = ∂h ∂x (ˆ x ( t ) , u ( t )) , ∂x (ˆ x ( t )) Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  7. Kalman Filter Gain: H ( t ) = P ( t ) C T ( t ) R − 1 P = AP + PA T + Q − PC T R − 1 CP, ˙ P ( t 0 ) = P 0 P 0 , Q and R are symmetric, positive definite matrices Assumption 11.1: P ( t ) exists for all t ≥ t 0 and satisfies α 1 I ≤ P ( t ) ≤ α 2 I, α i > 0 Remarks: Assumption 11.1 cannot be checked offline The observer and Riccati equations are solved simultaneously in real time Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  8. Lemma 11.2 There exist positive constants c , k , and λ such that x ( t ) � ≤ ke − λ ( t − t 0 ) , � ˜ x (0) � ≤ c ⇒ � ˜ ∀ t ≥ t 0 ≥ 0 Proof � f ( x, u ) − f (ˆ x, u ) − A ( t )˜ x � = � 1 � � � ∂f x, u ) − ∂f � x � 2 � � 1 ∂x ( σ ˜ x + ˆ ∂x (ˆ x, u ) dσ ˜ x � ≤ 2 L 1 � ˜ � � � 0 � h ( x ) − h (ˆ x ) − C ( t )˜ x � = � 1 � � ∂h x ) − ∂h � � � � 1 x � 2 ∂x ( σ ˜ x + ˆ ∂x (ˆ x ) dσ ˜ x � ≤ 2 L 2 � ˜ � � � 0 Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  9. � � � � ∂h ∂h � � � � � C ( t ) � = ∂x ( x − ˜ x ) � ≤ ∂x (0) � + L 2 ( � x � + � ˜ x � ) � � � � � � x � 2 + k 3 � ˜ x � 3 � ∆(˜ x, x, u ) � ≤ k 1 � ˜ α 1 I ≤ P ( t ) ≤ α 2 I ⇔ α 3 I ≤ P − 1 ( t ) ≤ α 4 I, α i > 0 x T P − 1 ˜ V = ˜ x d dtP − 1 = − P − 1 ˙ PP − 1 Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  10. x T d x T P − 1 ˙ x T P − 1 ˜ ˙ x + ˙ dtP − 1 ˜ V = ˜ ˜ ˜ x + ˜ x x T P − 1 ( A − PC T R − 1 C )˜ = ˜ x x T ( A T − C T R − 1 CP ) P − 1 ˜ + ˜ x x T P − 1 ˙ x T P − 1 ∆ PP − 1 ˜ − ˜ x + 2˜ x T P − 1 ( AP + PA T − PC T R − 1 CP − ˙ P ) P − 1 ˜ = ˜ x x T C T R − 1 C ˜ x T P − 1 ∆ − ˜ x + 2˜ x T ( P − 1 QP − 1 + C T R − 1 C )˜ x T P − 1 ∆ = − ˜ x + 2˜ x � 2 + c 2 k 1 � ˜ x || 3 + c 2 k 2 � ˜ ˙ x || 4 V ≤ − c 1 � ˜ ˙ V ≤ − 1 x � 2 , 2 c 1 � ˜ for � ˜ x � ≤ r Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  11. Example 11.1 x = A 1 x + B 1 [0 . 25 x 2 ˙ 1 x 2 + 0 . 2 sin 2 t ] , y = C 1 x � 0 � � 0 � 1 � � A 1 = , B 1 = , C 1 = 1 0 − 1 − 2 1 Investigate boundedness of x ( t ) P 1 = 1 � 3 � 1 P 1 A 1 + A T 1 P 1 = − I ⇒ 1 1 2 V ( x ) = x T P 1 x Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  12. − x T x + 2 x T P 1 B 1 [0 . 25 x 2 ˙ V = 1 x 2 + 0 . 2 sin 2 t ] −� x � 2 + 0 . 5 � P 1 B 1 � x 2 1 � x � 2 + 0 . 4 � P 1 B 1 �� x � ≤ −� x � 2 + x 2 � x � 2 + 0 . 4 1 = √ √ � x � 2 2 2 √ − 0 . 5 � x � 2 + 0 . 4 for x 2 ≤ √ 2 � x � , 1 ≤ 2 √ √ 2 � T = 2 P − 1 � � � 1 0 1 0 1 √ √ 2 } ⊂ { x 2 Ω = { V ( x ) ≤ 1 ≤ 2 } Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  13. Inside Ω − 0 . 5 � x � 2 + 0 . 4 ˙ √ V ≤ 2 � x � 0 . 4 − 0 . 15 � x � 2 , ≤ ∀ � x � ≥ √ 2 = 0 . 8081 0 . 35 √ (0 . 8081) 2 λ max ( P 1 ) < λ max ( P 1 ) = 1 . 7071 ⇒ 2 ⇒ {� x � ≤ 0 . 8081 } ⊂ Ω ⇒ Ω is positively invariant Design EKF to estimate x ( t ) for x (0) ∈ Ω Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  14. � � 0 1 A ( t ) = x 2 − 1 + 0 . 5ˆ x 1 ( t )ˆ x 2 ( t ) − 2 + 0 . 25ˆ 1 ( t ) � 1 0 � C = Q = R = P (0) = I P = AP + PA T + I − PC T CP, ˙ P (0) = I � p 11 � p 12 P = p 12 p 22 Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  15. ˙ x 1 ˆ = x 2 + p 11 ( y − ˆ ˆ x 1 ) ˙ x 2 x 2 ˆ = − ˆ x 1 − 2ˆ x 2 + 0 . 25ˆ 1 ˆ x 2 + 0 . 2 sin 2 t + p 12 ( y − ˆ x 1 ) 2 p 12 + 1 − p 2 p 11 ˙ = 11 x 2 p 12 ˙ = p 11 ( − 1 + 0 . 5ˆ x 1 ˆ x 2 ) + p 12 ( − 2 + 0 . 25ˆ 1 ) + p 22 − p 11 p 12 x 2 p 22 ˙ = 2 p 12 ( − 1 + 0 . 5ˆ x 1 ˆ x 2 ) + 2 p 22 ( − 2 + 0 . 25ˆ 1 ) + 1 − p 2 12 Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  16. (a) (b) 1 x 1 1 p 11 x 2 Components of P(t) 0.5 0.8 Estimation Error 0.6 p 22 0 0.4 0.2 −0.5 0 p 12 −0.2 −1 −0.4 0 1 2 3 4 0 1 2 3 4 Time Time Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  17. Global Observers Observer Form: x = Ax + ψ ( u, y ) , ˙ y = Cx ( A, C ) observable ˙ ˆ x = A ˆ x + ψ ( u, y ) + H ( y − C ˆ x ) x = x − ˆ ˜ x ˙ ˜ x = ( A − HC )˜ x Design H such that A − HC is Hurwitz lim t →∞ ˜ x ( t ) = 0 , ∀ ˜ x (0) Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  18. x = Ax + ψ ( u, y ) + φ ( x, u ) , ˙ y = Cx � φ ( x, u ) − φ ( z, u ) � ≤ L � x − z � ˙ x = A ˆ ˆ x + ψ ( u, y ) + φ (ˆ x, u ) + H ( y − C ˆ x ) ˙ x = ( A − HC )˜ ˜ x + φ ( x, u ) − φ (ˆ x, u ) P ( A − HC ) + ( A − HC ) T P = − I, x T P ˜ V = ˜ x x T ˜ x � 2 + 2 L � P �� ˜ ˙ x T P [ φ ( x, u ) − φ (ˆ x � 2 V = − ˜ x + 2˜ x, u )] ≤ −� ˜ 1 L < ⇒ lim t →∞ ˜ x ( t ) = 0 , ∀ ˜ x (0) 2 � P � Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  19. High-Gain Observers Example 11.2 x 1 = x 2 , ˙ x 2 = φ ( x, u ) , ˙ y = x 1 ˙ ˙ x 1 = ˆ ˆ x 2 + h 1 ( y − ˆ x 1 ) , x 2 = φ 0 (ˆ ˆ x, u ) + h 2 ( y − ˆ x 1 ) | φ 0 ( z, u ) − φ ( x, u ) | ≤ L � x − z � + M ˙ x = A o ˜ ˜ x + Bδ ( x, ˜ x, u ) � − h 1 � 0 � � 1 A o = , B = , δ = φ ( x, u ) − φ 0 (ˆ x, u ) − h 2 0 1 Design h 1 and h 2 such that A o is Hurwitz Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

  20. Transfer function from δ to ˜ x : 1 � � 1 G o ( s ) = s 2 + h 1 s + h 2 s + h 1 We can make sup ω ∈ R � G o ( jω ) � arbitrarily small by choosing h 2 ≫ h 1 ≫ 1 h 1 = α 1 h 2 = α 2 ε , ε 2 , ε ≪ 1 ε � � ε G o ( s ) = ( εs ) 2 + α 1 εs + α 2 εs + α 1 lim ε → 0 G o ( s ) = 0 Nonlinear Control Lecture # 12 Nonlinear Observers and Output Feedback Stabilization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend