nonlinear control lecture 8 special nonlinear forms
play

Nonlinear Control Lecture # 8 Special nonlinear Forms Nonlinear - PowerPoint PPT Presentation

Nonlinear Control Lecture # 8 Special nonlinear Forms Nonlinear Control Lecture # 8 Special nonlinear Forms Normal Form Relative Degree x = f ( x ) + g ( x ) u, y = h ( x ) where f , g , and h are sufficiently smooth in a domain D f : D


  1. Nonlinear Control Lecture # 8 Special nonlinear Forms Nonlinear Control Lecture # 8 Special nonlinear Forms

  2. Normal Form Relative Degree x = f ( x ) + g ( x ) u, ˙ y = h ( x ) where f , g , and h are sufficiently smooth in a domain D f : D → R n and g : D → R n are called vector fields on D y = ∂h def ˙ ∂x [ f ( x ) + g ( x ) u ] = L f h ( x ) + L g h ( x ) u L f h ( x ) = ∂h ∂xf ( x ) is the Lie Derivative of h with respect to f or along f Nonlinear Control Lecture # 8 Special nonlinear Forms

  3. L g L f h ( x ) = ∂ ( L f h ) g ( x ) ∂x f h ( x ) = L f L f h ( x ) = ∂ ( L f h ) L 2 f ( x ) ∂x h ( x ) = ∂ ( L k − 1 h ) f h ( x ) = L f L k − 1 f L k f ( x ) f ∂x L 0 f h ( x ) = h ( x ) y = L f h ( x ) + L g h ( x ) u ˙ L g h ( x ) = 0 ⇒ y = L f h ( x ) ˙ y (2) = ∂ ( L f h ) [ f ( x ) + g ( x ) u ] = L 2 f h ( x ) + L g L f h ( x ) u ∂x Nonlinear Control Lecture # 8 Special nonlinear Forms

  4. y (2) = L 2 L g L f h ( x ) = 0 ⇒ f h ( x ) y (3) = L 3 f h ( x ) + L g L 2 f h ( x ) u L g L ρ − 1 L g L i − 1 h ( x ) = 0 , i = 1 , 2 , . . . , ρ − 1; h ( x ) � = 0 f f y ( ρ ) = L ρ f h ( x ) + L g L ρ − 1 h ( x ) u f Definition 8.1 The system x = f ( x ) + g ( x ) u, ˙ y = h ( x ) has relative degree ρ , 1 ≤ ρ ≤ n , in R ⊂ D if ∀ x ∈ R L g L i − 1 L g L ρ − 1 h ( x ) = 0 , i = 1 , 2 , . . . , ρ − 1; h ( x ) � = 0 f f Nonlinear Control Lecture # 8 Special nonlinear Forms

  5. Example 8.1 (Read) Controlled van der Pol equation 3 x 3 x 2 = ε [ − x 1 + x 2 − 1 x 1 = x 2 /ε, ˙ ˙ 2 + u ] , y = x 1 x 2 /ε = − x 1 + x 2 − 1 3 x 3 y = ˙ ˙ x 1 = x 2 /ε, y = ˙ ¨ 2 + u Relative degree two over R 2 x 2 = ε [ − x 1 + x 2 − 1 3 x 3 x 1 = x 2 /ε, ˙ ˙ 2 + u ] , y = x 2 y = ε [ − x 1 + x 2 − 1 3 x 3 Relative degree one over R 2 ˙ 2 + u ] , x 2 = ε [ − x 1 + x 2 − 1 3 x 3 y = 1 2 ( ε 2 x 2 1 + x 2 x 1 = x 2 /ε, ˙ ˙ 2 + u ] , 2 ) y = ε 2 x 1 ˙ x 2 = εx 2 2 − ( ε/ 3) x 4 ˙ x 1 + x 2 ˙ 2 + εx 2 u Relative degree one in { x 2 � = 0 } Nonlinear Control Lecture # 8 Special nonlinear Forms

  6. Example 8.2 (Field-controlled DC motor) x 1 ˙ = d 1 ( − x 1 − x 2 x 3 + V a ) x 2 ˙ = d 2 [ − f e ( x 2 ) + u ] x 3 ˙ = d 3 ( x 1 x 2 − bx 3 ) y = x 3 y = ˙ ˙ x 3 = d 3 ( x 1 x 2 − bx 3 ) y = d 3 ( x 1 ˙ ¨ x 2 + ˙ x 1 x 2 − b ˙ x 3 ) = ( · · · ) + d 2 d 3 x 1 u Relative degree one in { x 1 � = 0 } Nonlinear Control Lecture # 8 Special nonlinear Forms

  7. Example 8.3 H ( s ) = b m s m + b m − 1 s m − 1 + · · · + b 0 s n + a n − 1 s n − 1 + · · · + a 0 x = Ax + Bu, ˙ y = Cx  0 1 0 . . . . . . 0    0 0 0 1 . . . . . . 0 0     . .  ...   .  . . .     . . .         ...         A , B = =  .    ... .     .         . . ... . .     . 0 .         0 0 1 0     − a 0 − a 1 . . . . . . − a m . . . . . . − a n − 1 1 � � C b 0 b 1 . . . . . . b m 0 . . . 0 = Nonlinear Control Lecture # 8 Special nonlinear Forms

  8. Change of variables: φ 1 ( x )   . . .     φ n − ρ ( x )     φ ( x ) η     def  def z = T ( x ) = − − − = − − − = − − −        h ( x ) ψ ( x ) ξ     . .   .   L ρ − 1 h ( x ) f φ 1 to φ n − ρ are chosen such that T ( x ) is a diffeomorphism on a domain D x ⊂ R When ρ = n, z = T ( x ) = ψ ( x ) = ξ Nonlinear Control Lecture # 8 Special nonlinear Forms

  9. ∂φ η ˙ = ∂x [ f ( x ) + g ( x ) u ] = f 0 ( η, ξ ) + g 0 ( η, ξ ) u ˙ ξ i = ξ i +1 , 1 ≤ i ≤ ρ − 1 ˙ L ρ f h ( x ) + L g L ρ − 1 ξ ρ = h ( x ) u f y = ξ 1 Choose φ ( x ) such that T ( x ) is a diffeomorphism and ∂φ i ∂x g ( x ) = 0 , for 1 ≤ i ≤ n − ρ, ∀ x ∈ D x Always possible (at least locally) η = f 0 ( η, ξ ) ˙ Nonlinear Control Lecture # 8 Special nonlinear Forms

  10. Theorem 8.1 Suppose the system x = f ( x ) + g ( x ) u, ˙ y = h ( x ) has relative degree ρ ( ≤ n ) in R . If ρ = n , then for every x 0 ∈ R , a neighborhood N of x 0 exists such that the map T ( x ) = ψ ( x ) , restricted to N , is a diffeomorphism on N . If ρ < n , then, for every x 0 ∈ R , a neighborhood N of x 0 and smooth functions φ 1 ( x ) , . . . , φ n − ρ ( x ) exist such that ∂φ i ∂x g ( x ) = 0 , for 1 ≤ i ≤ n − ρ � φ ( x ) � is satisfied for all x ∈ N and the map T ( x ) = , ψ ( x ) restricted to N , is a diffeomorphism on N Nonlinear Control Lecture # 8 Special nonlinear Forms

  11. Normal Form: η ˙ = f 0 ( η, ξ ) ˙ ξ i = ξ i +1 , 1 ≤ i ≤ ρ − 1 ˙ L ρ f h ( x ) + L g L ρ − 1 ξ ρ = h ( x ) u f y = ξ 1  0 1 0 . . . 0    0 0 0 1 . . . 0 0     . . ...    .  . . . A c = . . , B c =     .     . .    0  . 0 1     1 0 . . . . . . 0 0 � 1 0 � C c = 0 . . . 0 Nonlinear Control Lecture # 8 Special nonlinear Forms

  12. η ˙ = f 0 ( η, ξ ) ˙ f h ( x ) + L g L ρ − 1 L ρ � � ξ = A c ξ + B c h ( x ) u f y = C c ξ ˜ γ ( η, ξ ) = L g L ρ − 1 ψ ( η, ξ ) = L ρ � � f h ( x ) x = T − 1 ( z ) , ˜ h ( x ) � � f x = T − 1 ( z ) ξ = A c ξ + B c [ ˜ ˙ ψ ( η, ξ ) + ˜ γ ( η, ξ ) u ] If x ∗ is an open-loop equilibrium point at which y = 0 ; i.e., f ( x ∗ ) = 0 and h ( x ∗ ) = 0 , then ψ ( x ∗ ) = 0 . Take φ ( x ∗ ) = 0 so that z = 0 is an open-loop equilibrium point. Nonlinear Control Lecture # 8 Special nonlinear Forms

  13. Zero Dynamics η ˙ = f 0 ( η, ξ ) ˙ L ρ f h ( x ) + L g L ρ − 1 � � ξ = A c ξ + B c h ( x ) u f y = C c ξ L ρ f h ( x ( t )) y ( t ) ≡ 0 ⇒ ξ ( t ) ≡ 0 ⇒ u ( t ) ≡ − L g L ρ − 1 h ( x ( t )) f ⇒ ˙ η = f 0 ( η, 0) Definition The equation ˙ η = f 0 ( η, 0) is called the zero dynamics of the system. The system is said to be minimum phase if the zero dynamics have an asymptotically stable equilibrium point in the domain of interest (at the origin if T (0) = 0 ) Nonlinear Control Lecture # 8 Special nonlinear Forms

  14. Z ∗ = { x ∈ R | h ( x ) = L f h ( x ) = · · · = L ρ − 1 h ( x ) = 0 } f y ( t ) ≡ 0 ⇒ x ( t ) ∈ Z ∗ � L ρ f h ( x ) � def ⇒ u = u ∗ ( x ) = − � L g L ρ − 1 h ( x ) � f � x ∈ Z ∗ The restricted motion of the system is described by � L ρ � f h ( x ) def x = f ∗ ( x ) ˙ = f ( x ) − g ( x ) L g L ρ − 1 h ( x ) f x ∈ Z ∗ Nonlinear Control Lecture # 8 Special nonlinear Forms

  15. Example 8.4 x 2 = ε [ − x 1 + x 2 − 1 3 x 3 x 1 = x 2 /ε, ˙ ˙ 2 + u ] , y = x 2 x 2 = ε [ − x 1 + x 2 − 1 3 x 3 y = ˙ ˙ 2 + u ] ⇒ ρ = 1 The system is in the normal form with η = x 1 and ξ = x 2 y ( t ) ≡ 0 ⇒ x 2 ( t ) ≡ 0 ⇒ ˙ x 1 = 0 Non-minimum phase Nonlinear Control Lecture # 8 Special nonlinear Forms

  16. Example 8.5 x 1 = − x 1 + 2 + x 2 3 ˙ u, ˙ x 2 = x 3 , ˙ x 3 = x 1 x 3 + u, y = x 2 1 + x 2 3 y = ˙ ˙ x 2 = x 3 y = ˙ ¨ x 3 = x 1 x 3 + u ⇒ ρ = 2 Z ∗ = { x 2 = x 3 = 0 } u = u ∗ ( x ) = 0 ⇒ x 1 = − x 1 ˙ Minimum phase Nonlinear Control Lecture # 8 Special nonlinear Forms

  17. Find φ ( x ) such that   2+ x 2 3 ∂φ 1+ x 2 � � 3 ∂φ ∂φ ∂φ φ (0) = 0 , ∂xg ( x ) = ∂x 1 , ∂x 2 ,  = 0  0  ∂x 3  1 and � φ ( x ) � T T ( x ) = x 2 x 3 is a diffeomorphism · 2 + x 2 ∂φ + ∂φ 3 = 0 1 + x 2 ∂x 1 ∂x 3 3 φ ( x ) = x 1 − x 3 − tan − 1 x 3 Nonlinear Control Lecture # 8 Special nonlinear Forms

  18. x 1 − x 3 − tan − 1 x 3     1 0 ⋆ ∂T  , T ( x ) = x 2 ∂x = 0 1 0    x 3 0 0 1 T ( x ) is a global diffeomorphism 1 + 2 + ξ 2 � � � η + ξ 2 + tan − 1 ξ 2 2 � η ˙ = − ξ 2 1 + ξ 2 2 ˙ ξ 1 = ξ 2 η + ξ 2 + tan − 1 ξ 2 ˙ � � ξ 2 = ξ 2 + u y = ξ 1 Nonlinear Control Lecture # 8 Special nonlinear Forms

  19. Controller Form Definition A nonlinear system is in the controller form if x = Ax + B [ ψ ( x ) + γ ( x ) u ] ˙ where ( A, B ) is controllable and γ ( x ) is a nonsingular matrix for all x in the domain of interest u = γ − 1 ( x )[ − ψ ( x ) + v ] ⇒ x = Ax + Bv ˙ Any system that can be represented in the controller form is said to be feedback linearizable Nonlinear Control Lecture # 8 Special nonlinear Forms

  20. Example 8.7 ( m -link robot) M ( q )¨ q + C ( q, ˙ q ) ˙ q + D ˙ q + g ( q ) = u q is an m -dimensional vector of joint positions and M ( q ) is a nonsingular inertial matrix � 0 � 0 � q � � � I m x = , A = , B = q ˙ 0 0 I m ψ = − M − 1 ( C ˙ γ = M − 1 q + D ˙ q + g ) , Nonlinear Control Lecture # 8 Special nonlinear Forms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend