just the maths slides number 14 9 partial differentiation
play

JUST THE MATHS SLIDES NUMBER 14.9 PARTIAL DIFFERENTIATION 9 - PDF document

JUST THE MATHS SLIDES NUMBER 14.9 PARTIAL DIFFERENTIATION 9 (Taylors series) for (Functions of several variables) by A.J.Hobson 14.9.1 The theory and formula UNIT 14.9 PARTIAL DIFFERENTIATION 9 TAYLORS SERIES FOR FUNCTIONS


  1. “JUST THE MATHS” SLIDES NUMBER 14.9 PARTIAL DIFFERENTIATION 9 (Taylor’s series) for (Functions of several variables) by A.J.Hobson 14.9.1 The theory and formula

  2. UNIT 14.9 PARTIAL DIFFERENTIATION 9 TAYLOR’S SERIES FOR FUNCTIONS OF SEVERAL VARIABLES 14.9.1 THE THEORY AND FORMULA First, we obtain a formula for f ( x + h, y + k ) in terms of f ( x, y ) and its partial derivatives. Let P,Q and R denote the points with cartesian co-ordinates, ( x, y ), ( x + h, y ) and ( x + h, y + k ), respectively. y ✻ R P Q ✲ x O (a) On the straight line from P to Q, y remains constant, so f ( x, y ) behaves as a function of x only. 1

  3. By Taylor’s theorem for one independent variable, f ( x + h, y ) = f ( x, y ) + f x ( x, y ) + h 2 2! f xx ( x, y ) + . . . Notes: ∂x and ∂ 2 f (i) f x ( x, y ) and f xx ( x, y ) mean ∂f ∂x 2 , respectively (ii) In abbreviated notation, f (Q) = f (P) + hf x (P) + h 2 2! f xx (P) + . . (b) On the straight line from Q to R, x remains constant, so f ( x, y ) behaves as a function of y only. Hence, f ( x + h, y + k ) = f ( x + h, y ) + kf x ( x + h, y ) + k 2 2! f xx ( x + h, y ) + . . . Note: In abbreviated notation, f (R) = f (Q) + kf y (Q) + k 2 2! f yy (Q) + . . 2

  4. (c) From the result in (a), f y (Q) = f y (P) + hf yx (P) + h 2 2! f yxx (P) + . . . and f yy (Q) = f yy (P) + hf yyx (P) + h 2 2! f yyxx (Q) + . . . (d) Substituting into (b) gives f (R) = f (P) + hf x (P) + kf y (P)+ 1 h 2 f xx (P) + 2 hkf yx (P) + k 2 f yy (P) � � + . . 2! It may be shown that the complete result can be written as   h ∂ ∂x + k ∂  f ( x + h, y + k ) = f ( x, y ) +  f ( x, y )+     ∂y 2 1   h ∂ ∂x + k ∂  f ( x, y )+     2! ∂y  3 1  h ∂  ∂x + k ∂  f ( x, y ) + . . .     3! ∂y  3

  5. Notes: (i) The equivalent result for a function of three variables is f ( x + h, y + k, z + l ) =   h ∂ ∂x + k ∂ ∂y + l ∂  f ( x, y, z ) +  f ( x, y, z )+     ∂z 2 1  h ∂  ∂x + k ∂ ∂y + l ∂  f ( x, y, z )+     2! ∂z  3 1   h ∂ ∂x + k ∂ ∂y + l ∂  f ( x, y, z ) + . . .     3! ∂z  (ii) Alternative versions of Taylor’s theorem may be ob- tained by interchanging x, y, z... with h, k, l... . For example,  x ∂ ∂x + y ∂   f ( x + h, y + k ) = f ( h, k ) +  f ( h, k )+     ∂y 2 3 1  x ∂  ∂x + y ∂  f ( h, k )+ 1   x ∂ ∂x + y ∂  f ( h, k )+ . . .         2! ∂y 3! ∂y   4

  6. (iii) Replacing x with x − h and y with y − k in (ii) gives  ( x − h ) ∂  ∂x + ( y − k ) ∂  f ( x, y ) = f ( h, k ) +  f ( h, k )+     ∂y 2 1  ( x − h ) ∂ ∂x + ( y − k ) ∂   f ( h, k )+     2! ∂y  3 1   ( x − h ) ∂ ∂x + ( y − k ) ∂  f ( h, k ) + . . .     3! ∂y  This is the “Taylor expansion of f ( x, y ) about the point ( a, b ) ” (iv) A special case of Taylor’s series (for two independent variables) with h = 0 and k = 0 is f ( x, y ) = 2  x ∂ ∂x + y ∂  f (0 , 0)+ 1  x ∂ ∂x + y ∂     f (0 , 0)+ f (0 , 0)+ . . .         ∂y ∂y 2!  This is called a “MacLaurin’s series” 5

  7. EXAMPLE Determine the Taylor series expansion of the function x + 1 , y + π � � f in ascending powers of x and y when 3 f ( x, y ) ≡ sin xy, neglecting terms of degree higher than two. Solution  x + 1 , y + π  1 , π      = f  + f 3 3 2  x ∂  ∂x + y ∂   1 , π  + 1   x ∂ ∂x + y ∂   1 , π      + . . .  f f         ∂y 3 2! ∂y 3  √ The first term on the right has value 3 / 2. The partial derivatives required are as follows: ∂f ∂x ≡ y cos xy = − π 6 at x = 1 , y = π 3; ∂f ∂y ≡ x cos xy = 1 2 at x = 1 , y = π 3; ∂x 2 ≡ − y 2 sin xy = − π 2 √ ∂ 2 f 3 at x = 1 , y = π 3; 18 6

  8. √ ∂ 2 f ∂x∂y ≡ cos xy − xy sin xy = 1 2 − π 3 at x = 1 , y = π 3; 6 √ ∂ 2 f 3 at x = 1 , y = π ∂y 2 ≡ − x 2 sin xy = − 3 . 2 Neglecting terms of degree higher than two, sin xy = √ √ √ √ 3 π 2   2 + π 3 6 x + 1 1 2 − π 3 3 36 x 2 + 4 y 2 + . . . 2 y −  xy −       6  7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend