nonlinear control lecture 13 output feedback stabilization
play

Nonlinear Control Lecture # 13 Output Feedback Stabilization - PowerPoint PPT Presentation

Nonlinear Control Lecture # 13 Output Feedback Stabilization Nonlinear Control Lecture # 13 Output Feedback Stabilization Passivity-Based Control In Section 9.6 we saw that if the system x = f ( x, u ) , y = h ( x ) is passive (with a


  1. Nonlinear Control Lecture # 13 Output Feedback Stabilization Nonlinear Control Lecture # 13 Output Feedback Stabilization

  2. Passivity-Based Control In Section 9.6 we saw that if the system x = f ( x, u ) , ˙ y = h ( x ) is passive (with a positive definite storage function) and zero-state observable, it can be stabilized by y T φ ( y ) > 0 , u = − φ ( y ) , φ (0) = 0 , ∀ y � = 0 Suppose the system y = ∂h def = ˜ x = f ( x, u ) , ˙ ˙ ∂xf ( x, u ) h ( x, u ) is passive (with a positive definite storage function V ( x ) ) and zero state observable Nonlinear Control Lecture # 13 Output Feedback Stabilization

  3. y + u ✲ ❥ ✲ ✲ Plant − ✻ z ✛ ✛ s φ ( · ) τs +1 y + u y ˙ ✲ ❥ ✲ ✲ ✲ s Plant − ✻ z ✛ 1 ✛ φ ( · ) τs +1 Nonlinear Control Lecture # 13 Output Feedback Stabilization

  4. s τs + 1 τ ˙ w = − w + y, z = ( − w + y ) /τ MIMO systems τ i ˙ w i = − w i + y i , z i = ( − w i + y i ) /τ i , for 1 ≤ i ≤ m Note that τ i ˙ z i = − z i + ˙ y i Nonlinear Control Lecture # 13 Output Feedback Stabilization

  5. Lemma 12.1 Consider the system x = f ( x, u ) , ˙ y = h ( x ) and the output feedback controller u i = − φ i ( z i ) , τ i ˙ w i = − w i + y i , z i = ( − w i + y i ) /τ i τ i > 0 , φ i (0) = 0 , z i φ i ( z i ) > 0 ∀ z i � = 0 Suppose the auxiliary system y = ˜ x = f ( x, u ) , ˙ ˙ h ( x, u ) is Nonlinear Control Lecture # 13 Output Feedback Stabilization

  6. passive with a positive definite storage function V ( x ) V = ∂V u T ˙ y ≥ ˙ ∂x f ( x, u ) , ∀ ( x, u ) zero-state observable with u = 0 , ˙ y ( t ) ≡ 0 ⇒ x ( t ) ≡ 0 Then the origin of the closed-loop system is asymptotically stable. It is globally asymptotically stable if V ( x ) is radially � z i unbounded and 0 φ i ( σ ) dσ → ∞ as | z i | → ∞ Nonlinear Control Lecture # 13 Output Feedback Stabilization

  7. Proof � z i m � W ( x, z ) = V ( x ) + τ i φ i ( σ ) dσ 0 i =1 m m z i ≤ u T ˙ z i φ i ( z i ) − u T ˙ W = ˙ ˙ � � V + τ i φ i ( z i ) ˙ y − y i =1 i =1 m ˙ � W ≤ − z i φ i ( z i ) i =1 ˙ W ≡ 0 ⇒ z ( t ) ≡ 0 ⇒ u ( t ) ≡ 0 and y ( t ) ≡ 0 ˙ Apply the invariance principle Nonlinear Control Lecture # 13 Output Feedback Stabilization

  8. Example 12.2 ( m -link Robot Manipulator) M ( q )¨ q + C ( q, ˙ q ) ˙ q + D ˙ q + g ( q ) = u M = M T > 0 , ( ˙ M − 2 C ) T = − ( ˙ M − 2 C ) , D = D T ≥ 0 Stabilize the system at q = q r , e = q − q r , ˙ e = ˙ q M ( q )¨ e + C ( q, ˙ q )˙ e + D ˙ e + g ( q ) = u u = g ( q ) − K p e + v, [ K p = K p > 0] M ( q )¨ e + C ( q, ˙ q )˙ e + D ˙ e + K p e = v, y = e 2 e T K p e e T M ( q )˙ V = 1 e + 1 2 ˙ Nonlinear Control Lecture # 13 Output Feedback Stabilization

  9. 2 e T K p e e T M ( q )˙ V = 1 e + 1 2 ˙ e T D ˙ e T v ˙ e T ( ˙ e T K p e + ˙ e T v + e T K p ˙ V = 1 2 ˙ M − 2 C )˙ e − ˙ e − ˙ e ≤ ˙ Is it zero-state observable? Set v = 0 e ( t ) ≡ 0 ⇒ ¨ ˙ e ( t ) ≡ 0 ⇒ K p e ( t ) ≡ 0 ⇒ e ( t ) ≡ 0 τ i ˙ w i = − w i + e i , z i = ( − a i w i + e i ) /τ i , for 1 ≤ i ≤ m u = g ( q ) − K p ( q − q r ) − K d z K d is positive diagonal matrix. Compare with state feedback u = g ( q ) − K p ( q − q r ) − K d ˙ q Nonlinear Control Lecture # 13 Output Feedback Stabilization

  10. Observer-Based Control x = f ( x, u ) , ˙ y = h ( x ) State Feedback Controller: Design a locally Lipschitz u = γ ( x ) to stabilize the origin of x = f ( x, γ ( x )) ˙ Observer: ˙ ˆ x = f (ˆ x, u ) + H [ y − h (ˆ x )] x = x − ˆ ˜ x ˙ def ˜ x = f ( x, u ) − f (ˆ x, u ) − H [ h ( x ) − h (ˆ x )] = g ( x, ˜ x ) g ( x, 0) = 0 Nonlinear Control Lecture # 13 Output Feedback Stabilization

  11. Design H such that ˙ x = g ( x, ˜ ˜ x ) has an exponentially stable equilibrium point at ˜ x = 0 and there is Lyapunov function V 1 (˜ x ) such that � � x � 2 , ∂V 1 ∂V 1 x � 2 ≤ V 1 ≤ c 2 � ˜ x � 2 , � � c 1 � ˜ x g ≤ − c 3 � ˜ � ≤ c 4 � ˜ x � � � ∂ ˜ ∂ ˜ x � u = γ (ˆ x ) Closed-loop system: ˙ x = f ( x, γ ( x − ˜ ˙ x )) , x = g ( x, ˜ ˜ x ) ( ⋆ ) Nonlinear Control Lecture # 13 Output Feedback Stabilization

  12. Theorem 12.1 If the origin of ˙ x = f ( x, γ ( x )) is asymptotically stable, so is the origin of ( ⋆ ) If the origin of ˙ x = f ( x, γ ( x )) is exponentially stable, so is the origin of ( ⋆ ) If the assumptions hold globally and the system x = f ( x, γ ( x − ˜ ˙ x )) , with input ˜ x , is ISS, then the origin of ( ⋆ ) is globally asymptotically stable Nonlinear Control Lecture # 13 Output Feedback Stabilization

  13. High-Gain Observers Example 12.3 x 1 = x 2 , ˙ x 2 = φ ( x, u ) , ˙ y = x 1 State feedback control: u = γ ( x ) stabilizes the origin of x 1 = x 2 , ˙ x 2 = φ ( x, γ ( x )) ˙ High-gain observer ˙ ˙ x, u ) + ( α 2 /ε 2 )( y − ˆ x 1 = ˆ ˆ x 2 + ( α 1 /ε )( y − ˆ x 1 ) , ˆ x 2 = φ 0 (ˆ x 1 ) φ 0 is a nominal model of φ , α i > 0 , 0 < ε ≪ 1 � b � � be − at/ε , ε 2 cM � εe − at/ε , εcM | ˜ x 1 | ≤ max , | ˜ x 2 | ≤ Nonlinear Control Lecture # 13 Output Feedback Stabilization

  14. The bound on ˜ x 2 demonstrates the peaking phenomenon, which might destabilize the closed-loop system Example: x 2 = x 3 x 1 = x 2 , ˙ ˙ 2 + u, y = x 1 State feedback control: u = − x 3 2 − x 1 − x 2 Output feedback control: x 3 u = − ˆ 2 − ˆ x 1 − ˆ x 2 ˙ ˙ x 2 = (1 /ε 2 )( y − ˆ x 1 = ˆ ˆ x 2 + (2 /ε )( y − ˆ x 1 ) , ˆ x 1 ) Nonlinear Control Lecture # 13 Output Feedback Stabilization

  15. 0.5 0 SFB OFB ε = 0.1 −0.5 x 1 OFB ε = 0.01 −1 OFB ε = 0.005 −1.5 −2 0 1 2 3 4 5 6 7 8 9 10 1 0 −1 x 2 −2 −3 0 1 2 3 4 5 6 7 8 9 10 0 −100 u −200 −300 −400 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t Nonlinear Control Lecture # 13 Output Feedback Stabilization

  16. ε = 0 . 004 0.2 0 x 1 −0.2 −0.4 −0.6 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 −200 x 2 −400 −600 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 2000 1000 u 0 −1000 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 t Nonlinear Control Lecture # 13 Output Feedback Stabilization

  17. Closed-loop system under state feedback: � 0 � 1 x = Ax, ˙ A = − 1 − 1 � � 1 . 5 0 . 5 PA + A T P = − I ⇒ P = 0 . 5 1 Suppose x (0) belongs to the positively invariant set Ω = { V ( x ) ≤ 0 . 3 } | u | ≤ | x 2 | 3 + | x 1 + x 2 | ≤ 0 . 816 , ∀ x ∈ Ω Saturate u at ± 1 Nonlinear Control Lecture # 13 Output Feedback Stabilization

  18. x 3 u = sat( − ˆ 2 − ˆ x 1 − ˆ x 2 ) SFB 0.15 OFB ε = 0.1 OFB ε = 0.01 0.1 OFB ε = 0.001 x 1 0.05 0 −0.05 0 1 2 3 4 5 6 7 8 9 10 0.05 0 x 2 −0.05 −0.1 0 1 2 3 4 5 6 7 8 9 10 0 u −0.5 −1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t Nonlinear Control Lecture # 13 Output Feedback Stabilization

  19. Region of attraction under state feedback: 2 1 x 2 0 −1 −2 −3 −2 −1 0 1 2 3 x 1 Nonlinear Control Lecture # 13 Output Feedback Stabilization

  20. Region of attraction under output feedback: 1 0.5 x 2 0 −0.5 −1 −2 −1 0 1 2 x 1 ε = 0 . 08 (dashed) and ε = 0 . 01 (dash-dot) Nonlinear Control Lecture # 13 Output Feedback Stabilization

  21. Analysis of the closed-loop system: x 1 ˙ = x 2 x 2 ˙ = φ ( x, γ ( x − ˜ x )) ε ˙ η 1 = − α 1 η 1 + η 2 ε ˙ η 2 = − α 2 η 1 + εδ ( x, ˜ x ) η ✻ O (1 /ε ) q q ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ O ( ε ) ❉ ❉ ❲ ❲ ✲ ✛ ✲ Ω b x ✛ ✲ Ω c Nonlinear Control Lecture # 13 Output Feedback Stabilization

  22. General case w ˙ = ψ ( w, x, u ) x i ˙ = x i +1 + ψ i ( x 1 , . . . , x i , u ) , 1 ≤ i ≤ ρ − 1 x ρ ˙ = φ ( w, x, u ) y = x 1 z = q ( w, x ) φ (0 , 0 , 0) = 0 , ψ (0 , 0 , 0) = 0 , q (0 , 0) = 0 The normal form and models of mechanical and electromechanical systems take this form with ψ 1 = · · · = ψ ρ = 0 Why the extra measurement z ? Nonlinear Control Lecture # 13 Output Feedback Stabilization

  23. Stabilizing state feedback controller: ˙ ϑ = Γ( ϑ, x, z ) , u = γ ( ϑ, x, z ) γ and Γ are globally bounded functions of x Closed-loop system ˙ X = f ( X ) , X = col( w, x, ϑ ) Output feedback controller ˙ ϑ = Γ( ϑ, ˆ x, z ) , u = γ ( ϑ, ˆ x, z ) Nonlinear Control Lecture # 13 Output Feedback Stabilization

  24. Observer x i , u ) + α i ˙ x i ˆ = x i +1 + ψ i (ˆ ˆ x 1 , . . . , ˆ ε i ( y − ˆ x 1 ) , 1 ≤ i ≤ ρ − 1 x, u ) + α ρ ˙ x ρ ˆ = φ 0 ( z, ˆ ε ρ ( y − ˆ x 1 ) ε > 0 and α 1 to α ρ are chosen such that the roots of s ρ + α 1 s ρ − 1 + · · · + α ρ − 1 s + α ρ = 0 have negative real parts Nonlinear Control Lecture # 13 Output Feedback Stabilization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend