nonlinear control lecture 7 stability of feedback systems
play

Nonlinear Control Lecture # 7 Stability of Feedback Systems - PowerPoint PPT Presentation

Nonlinear Control Lecture # 7 Stability of Feedback Systems Nonlinear Control Lecture # 7 Stability of Feedback Systems u 1 e 1 y 1 H 1 + + y 2 e 2 u 2 + H 2 x i = f i ( x i , e i ) , y i


  1. Nonlinear Control Lecture # 7 Stability of Feedback Systems Nonlinear Control Lecture # 7 Stability of Feedback Systems

  2. u 1 e 1 y 1 ✲ ❧ ✲ ✲ H 1 + ✻ − + ❄ y 2 e 2 u 2 + ✛ ✛ ✛ ❧ H 2 x i = f i ( x i , e i ) , ˙ y i = h i ( x i , e i ) y i = h i ( t, e i ) Nonlinear Control Lecture # 7 Stability of Feedback Systems

  3. Passivity Theorems Theorem 7.1 The feedback connection of two passive systems is passive Proof Let V 1 ( x 1 ) and V 2 ( x 2 ) be the storage functions for H 1 and H 2 ( V i = 0 if H i is memoryless ) i y i ≥ ˙ e T V i , V ( x ) = V 1 ( x 1 ) + V 2 ( x 2 ) e T 1 y 1 + e T 2 y 2 = ( u 1 − y 2 ) T y 1 + ( u 2 + y 1 ) T y 2 = u T 1 y 1 + u T 2 y 2 � u 1 � � y 1 � u = , y = u 2 y 2 2 y 2 ≥ ˙ V 1 + ˙ V 2 = ˙ u T y = u T 1 y 1 + u T V Nonlinear Control Lecture # 7 Stability of Feedback Systems

  4. Asymptotic Stability Theorem 7.2 Consider the feedback connection of two dynamical systems. When u = 0 , the origin of the closed-loop system is asymptotically stable if one of the following conditions is satisfied: both feedback components are strictly passive; both feedback components are output strictly passive and zero-state observable; one component is strictly passive and the other one is output strictly passive and zero-state observable. If the storage function for each component is radially unbounded, the origin is globally asymptotically stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  5. Proof H 1 is SP; H 2 is OSP & ZSO 1 y 1 ≥ ˙ e T V 1 + ψ 1 ( x 1 ) , ψ 1 ( x 1 ) > 0 , ∀ x 1 � = 0 2 y 2 ≥ ˙ e T V 2 + y T y T 2 ρ 2 ( y 2 ) , 2 ρ ( y 2 ) > 0 , ∀ y 2 � = 0 e T 1 y 1 + e T 2 y 2 = ( u 1 − y 2 ) T y 1 + ( u 2 + y 1 ) T y 2 = u T 1 y 1 + u T 2 y 2 V ( x ) = V 1 ( x 1 ) + V 2 ( x 2 ) ˙ V ≤ u T y − ψ 1 ( x 1 ) − y T 2 ρ 2 ( y 2 ) ˙ V ≤ − ψ 1 ( x 1 ) − y T u = 0 ⇒ 2 ρ 2 ( y 2 ) Nonlinear Control Lecture # 7 Stability of Feedback Systems

  6. ˙ V ≤ − ψ 1 ( x 1 ) − y T 2 ρ 2 ( y 2 ) ˙ V = 0 ⇒ x 1 = 0 and y 2 = 0 y 2 ( t ) ≡ 0 ⇒ e 1 ( t ) ≡ 0 ( & x 1 ( t ) ≡ 0 ) ⇒ y 1 ( t ) ≡ 0 y 1 ( t ) ≡ 0 ⇒ e 2 ( t ) ≡ 0 By zero-state observability of H 2 : y 2 ( t ) ≡ 0 ⇒ x 2 ( t ) ≡ 0 Apply the invariance principle Nonlinear Control Lecture # 7 Stability of Feedback Systems

  7. Example 7.1 � � � � x 1 ˙ = x 2 x 3 ˙ = x 4 � � x 2 ˙ = − ax 3 1 − kx 2 + e 1 x 4 ˙ = − bx 3 − x 3 4 + e 2 � � y 1 = x 2 y 2 = x 4 � � � �� � � �� � � H 1 H 2 a, b, k > 0 V 1 = 1 4 ax 4 1 + 1 2 x 2 2 ˙ V 1 = ax 3 1 x 2 − ax 3 1 x 2 − kx 2 2 + x 2 e 1 = − ky 2 1 + y 1 e 1 With e 1 = 0 , y 1 ( t ) ≡ 0 ⇔ x 2 ( t ) ≡ 0 ⇒ x 1 ( t ) ≡ 0 H 1 is output strictly passive and zero-state observable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  8. V 2 = 1 2 bx 2 3 + 1 2 x 2 4 ˙ V 2 = bx 3 x 4 − bx 3 x 4 − x 4 4 + x 4 e 2 = − y 4 2 + y 2 e 2 With e 2 = 0 , y 2 ( t ) ≡ 0 ⇔ x 4 ( t ) ≡ 0 ⇒ x 3 ( t ) ≡ 0 H 2 is output strictly passive and zero-state observable V 1 and V 2 are radially unbounded The origin is globally asymptotically stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  9. Theorem 7.3 Consider the feedback connection of a strictly passive dynamical system with a passive time-varying memoryless function. When u = 0 , the origin of the closed-loop system is uniformly asymptotically stable. if the storage function for the dynamical system is radially unbounded, the origin will be globally uniformly asymptotically stable Proof Let V 1 ( x 1 ) be (positive definite) storage function of H 1 . V 1 = ∂V 1 ˙ f 1 ( x 1 , e 1 ) ≤ e T 1 y 1 − ψ 1 ( x 1 ) = − e T 2 y 2 − ψ 1 ( x 1 ) ∂x 1 ˙ e T 2 y 2 ≥ 0 ⇒ V 1 ≤ − ψ 1 ( x 1 ) Nonlinear Control Lecture # 7 Stability of Feedback Systems

  10. Example 7.4 Consider the feedback connection of a strictly positive real transfer function and a passive time-varying memoryless function From Lemma 5.4, we know that the dynamical system is strictly passive with a positive definite storage function V ( x ) = 1 2 x T Px From Theorem 7.3, the origin of the closed-loop system is globally uniformly asymptotically stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  11. Theorem 7.4 Consider the feedback connection of a time-invariant dynamical system H 1 with a time-invariant memoryless function H 2 . Suppose H 1 is zero-state observable, V 1 ( x 1 ) is positive definite 1 y 1 ≥ ˙ e T V 1 + y T e T 2 y 2 ≥ e T 1 ρ 1 ( y 1 ) , 2 ϕ 2 ( e 2 ) Then, the origin of the closed-loop system (when u = 0 ) is asymptotically stable if v T [ ρ 1 ( v ) + ϕ 2 ( v )] > 0 , ∀ v � = 0 Furthermore, if V 1 is radially unbounded, the origin will be globally asymptotically stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  12. Example 7.5 � � � � x ˙ = f ( x ) + G ( x ) e 1 � y 2 = σ ( e 2 ) � y 1 = h ( x ) � � �� � � � �� � H 2 � H 1 e T σ (0) = 0 , 2 σ ( e 2 ) > 0 , ∀ e 2 � = 0 Suppose H 1 is zero-state observable and there is a radially unbounded positive definite function V 1 ( x ) such that ∂V 1 ∂V 1 ∂x G ( x ) = h T ( x ) , ∀ x ∈ R n ∂x f ( x ) ≤ 0 , V 1 = ∂V 1 ∂x f ( x ) + ∂V 1 ˙ ∂x G ( x ) e 1 ≤ y T 1 e 1 Nonlinear Control Lecture # 7 Stability of Feedback Systems

  13. Apply Theorem 7.4: ˙ V 1 ≤ e T 1 y 1 1 y 1 ≥ ˙ e T V 1 + y T 1 ρ 1 ( y 1 ) is satisfied with ρ 1 = 0 e T 2 y 2 = e T 2 σ ( e 2 ) e T 2 y 2 ≥ e T 2 ϕ 2 ( e 2 ) is satisfied with ϕ 2 = σ v T [ ρ 1 ( v ) + ϕ 2 ( v )] = v T σ ( v ) > 0 , ∀ v � = 0 The origin is globally asymptotically stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  14. The Small-Gain Theorem u 1 e 1 y 1 ✲ ♥ ✲ ✲ H 1 + ✻ − + ❄ y 2 e 2 u 2 + ✛ ✛ ✛ ♥ H 2 ∀ e 1 ∈ L m � y 1 τ � L ≤ γ 1 � e 1 τ � L + β 1 , e , ∀ τ ∈ [0 , ∞ ) ∀ e 2 ∈ L q � y 2 τ � L ≤ γ 2 � e 2 τ � L + β 2 , e , ∀ τ ∈ [0 , ∞ ) Nonlinear Control Lecture # 7 Stability of Feedback Systems

  15. � � � � � � u 1 y 1 e 1 u = , y = , e = u 2 y 2 e 2 Theorem 7.7 The feedback connection is finite-gain L stable if γ 1 γ 2 < 1 Nonlinear Control Lecture # 7 Stability of Feedback Systems

  16. Absolute Stability + r = 0 u y ✎☞ ✲ ✲ ✲ G ( s ) ✍✌ ✻ − ✛ ψ ( · ) Definition 7.1 The system is absolutely stable if the origin is globally uniformly asymptotically stable for any nonlinearity in a given sector. It is absolutely stable with finite domain if the origin is uniformly asymptotically stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  17. Circle Criterion Suppose G ( s ) = C ( sI − A ) − 1 B + D is SPR, ψ ∈ [0 , ∞ ] x ˙ = Ax + Bu y = Cx + Du u = − ψ ( t, y ) By the KYP Lemma, ∃ P = P T > 0 , L, W, ε > 0 − L T L − εP PA + A T P = C T − L T W PB = W T W D + D T = 2 x T Px V ( x ) = 1 Nonlinear Control Lecture # 7 Stability of Feedback Systems

  18. x T Px ˙ 1 2 x T P ˙ x + 1 V = 2 ˙ 1 2 x T ( PA + A T P ) x + x T PBu = 2 x T L T Lx − 2 εx T Px + x T ( C T − L T W ) u − 1 1 = 2 x T L T Lx − − 1 1 2 εx T Px + ( Cx + Du ) T u = − u T Du − x T L T Wu u T Du = 1 2 u T ( D + D T ) u = 1 2 u T W T Wu ˙ 2 εx T Px − 2 ( Lx + Wu ) T ( Lx + Wu ) − y T ψ ( t, y ) V = − 1 1 ˙ y T ψ ( t, y ) ≥ 0 V ≤ − 1 2 εx T Px ⇒ The origin is globally exponentially stable Nonlinear Control Lecture # 7 Stability of Feedback Systems

  19. What if ψ ∈ [ K 1 , ∞ ] ? ✲ ❢ ✲ G ( s ) ✲ ✲ ❢ ✲ ❢ ✲ G ( s ) ✲ + + + − − − ✻ ✻ ✻ ✛ K 1 ✛ ✛ ✛ ❢ + ψ ( · ) ψ ( · ) − ✻ ✛ ˜ K 1 ψ ( · ) ˜ ψ ∈ [0 , ∞ ] ; hence the origin is globally exponentially stable if G ( s )[ I + K 1 G ( s )] − 1 is SPR Nonlinear Control Lecture # 7 Stability of Feedback Systems

  20. What if ψ ∈ [ K 1 , K 2 ] ? ❄ ✲ ❢ ✲ G ( s ) ✲ ✲ ❢ ✲ ❢ ✲ G ( s ) ✲ K ✲ ❢ ✲ + + + + − − − + ✻ ✻ ✻ ✛ K 1 ✛ ✛ ✛ ✛ ✛ ❢ + ❢ + ψ ( · ) ψ ( · ) K − 1 − + ✻ ✻ ✛ ˜ K 1 ψ ( · ) ˜ ψ ∈ [0 , ∞ ] ; hence the origin is globally exponentially stable if I + KG ( s )[ I + K 1 G ( s )] − 1 is SPR Nonlinear Control Lecture # 7 Stability of Feedback Systems

  21. I + KG ( s )[ I + K 1 G ( s )] − 1 = [ I + K 2 G ( s )][ I + K 1 G ( s )] − 1 Theorem 7.8 (Circle Criterion) The system is absolutely stable if ψ ∈ [ K 1 , ∞ ] and G ( s )[ I + K 1 G ( s )] − 1 is SPR, or ψ ∈ [ K 1 , K 2 ] and [ I + K 2 G ( s )][ I + K 1 G ( s )] − 1 is SPR If the sector condition is satisfied only on a set Y ⊂ R m , then the foregoing conditions ensure absolute stability with finite domain Nonlinear Control Lecture # 7 Stability of Feedback Systems

  22. Scalar Case: ψ ∈ [ α, β ] , β > α The system is absolutely stable if 1 + βG ( s ) is Hurwitz and 1 + αG ( s ) � 1 + βG ( jω ) � Re > 0 , ∀ ω ∈ [0 , ∞ ] 1 + αG ( jω ) Nonlinear Control Lecture # 7 Stability of Feedback Systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend