nonlinear control lecture 31 nonlinear observers
play

Nonlinear Control Lecture # 31 Nonlinear Observers Nonlinear - PowerPoint PPT Presentation

Nonlinear Control Lecture # 31 Nonlinear Observers Nonlinear Control Lecture # 31 Nonlinear Observers Local Observers x = f ( x, u ) , y = h ( x ) x = f ( x, u ) + H [ y h ( x )] x = x x x = f ( x, u ) f


  1. Nonlinear Control Lecture # 31 Nonlinear Observers Nonlinear Control Lecture # 31 Nonlinear Observers

  2. Local Observers x = f ( x, u ) , ˙ y = h ( x ) ˙ x = f (ˆ ˆ x, u ) + H [ y − h (ˆ x )] x = x − ˆ ˜ x ˙ x = f ( x, u ) − f (ˆ ˜ x, u ) − H [ h ( x ) − h (ˆ x )] We seek a local solution for sufficiently small � ˜ x (0) � Linearization at ˜ x = 0 : � ∂f � ∂x ( x ( t ) , u ( t )) − H ∂h ˙ x = ˜ ∂x ( x ( t )) x ˜ Nonlinear Control Lecture # 31 Nonlinear Observers

  3. Steady-state solution: 0 = f ( x ss , u ss ) , 0 = h ( x ss ) Assumption: given ε > 0 , there exist δ 1 > 0 and δ 2 > 0 such that � x (0) − x ss � ≤ δ 1 and � u ( t ) − u ss � ≤ δ 2 ∀ t ≥ 0 ⇒ � x ( t ) − x ss � ≤ ε ∀ t ≥ 0 A = ∂f C = ∂h ∂x ( x ss , u ss ) , ∂x ( x ss ) Assume that ( A, C ) is detectable. Design H such that A − HC is Hurwitz Nonlinear Control Lecture # 31 Nonlinear Observers

  4. Lemma 11.1 For sufficiently small � ˜ x (0) � , � x (0) − x ss � , and sup t ≥ 0 � u ( t ) − u ss � , t →∞ ˜ lim x ( t ) = 0 Proof � 1 ∂f f ( x, u ) − f (ˆ x, u ) = ∂x ( x − σ ˜ x, u ) dσ ˜ x 0 � f ( x, u ) − f (ˆ x, u ) − A ˜ x � = � 1 � � � ∂f x, u ) − ∂f ∂x ( x, u ) + ∂f ∂x ( x, u ) − ∂f � � � ∂x ( x − σ ˜ ∂x ( x ss , u ss ) dσ ˜ x � � � � 0 ≤ L 1 ( 1 2 � ˜ x � + � x − x ss � + � u − u ss � ) � ˜ x � Nonlinear Control Lecture # 31 Nonlinear Observers

  5. x � ≤ L 2 ( 1 � h ( x ) − h (ˆ x ) − C ˜ 2 � ˜ x � + � x − x ss � ) � ˜ x � ˙ x = ( A − HC )˜ ˜ x + ∆( x, u, ˜ x ) x � 2 + k 2 ( ε + δ 2 ) � ˜ � ∆( x, u, ˜ x ) � ≤ k 1 � ˜ x � P ( A − HC ) + ( A − HC ) T P = − I x T P ˜ V = ˜ x x � 2 + c 4 k 1 � ˜ x � 3 + c 4 k 2 ( ε + δ 2 ) � ˜ ˙ x � 2 V ≤ −� ˜ ˙ V ≤ − 1 x � 2 , x � ≤ 1 c 4 k 2 ( ε + δ 2 ) ≤ 1 3 � ˜ for c 4 k 1 � ˜ and 3 3 For sufficiently small � ˜ x (0) � , ε , and δ 2 , the estimation error converges to zero as t tends to infinity Nonlinear Control Lecture # 31 Nonlinear Observers

  6. The Extended Kalman Filter x = f ( x, u ) , ˙ y = h ( x ) ˙ x = f (ˆ ˆ x, u ) + H ( t )[ y − h (ˆ x )] x = x − ˆ ˜ x ˙ ˜ x = f ( x, u ) − f (ˆ x, u ) − H ( t )[ h ( x ) − h (ˆ x )] Expand the right-hand side in a Taylor series about ˜ x = 0 and evaluate the Jacobian matrices along ˆ x ˙ x = [ A ( t ) − H ( t ) C ( t )]˜ ˜ x + ∆(˜ x, x, u ) A ( t ) = ∂f C ( t ) = ∂h ∂x (ˆ x ( t ) , u ( t )) , ∂x (ˆ x ( t )) Nonlinear Control Lecture # 31 Nonlinear Observers

  7. Kalman Filter Gain: H ( t ) = P ( t ) C T ( t ) R − 1 P = AP + PA T + Q − PC T R − 1 CP, ˙ P ( t 0 ) = P 0 P 0 , Q and R are symmetric, positive definite matrices Assumption 11.1: P ( t ) exists for all t ≥ t 0 and satisfies α 1 I ≤ P ( t ) ≤ α 2 I, α i > 0 Remarks: Assumption 11.1 cannot be checked offline The observer and Riccati equations are solved simultaneously in real time Nonlinear Control Lecture # 31 Nonlinear Observers

  8. Lemma 11.2 There exist positive constants c , k , and λ such that x ( t ) � ≤ ke − λ ( t − t 0 ) , � ˜ x (0) � ≤ c ⇒ � ˜ ∀ t ≥ t 0 ≥ 0 Proof � f ( x, u ) − f (ˆ x, u ) − A ( t )˜ x � = � 1 � � � ∂f x, u ) − ∂f � x � 2 � � 1 ∂x ( σ ˜ x + ˆ ∂x (ˆ x, u ) dσ ˜ x � ≤ 2 L 1 � ˜ � � � 0 � h ( x ) − h (ˆ x ) − C ( t )˜ x � = � 1 � � ∂h � � x ) − ∂h � � 1 x � 2 ∂x ( σ ˜ x + ˆ ∂x (ˆ x ) dσ ˜ x � ≤ 2 L 2 � ˜ � � � 0 Nonlinear Control Lecture # 31 Nonlinear Observers

  9. � � � � ∂h ∂h � � � � � C ( t ) � = ∂x ( x − ˜ x ) � ≤ ∂x (0) � + L 2 ( � x � + � ˜ x � ) � � � � � � x � 2 + k 3 � ˜ x � 3 � ∆(˜ x, x, u ) � ≤ k 1 � ˜ α 1 I ≤ P ( t ) ≤ α 2 I ⇔ α 3 I ≤ P − 1 ( t ) ≤ α 4 I, α i > 0 x T P − 1 ˜ V = ˜ x d dtP − 1 = − P − 1 ˙ PP − 1 Nonlinear Control Lecture # 31 Nonlinear Observers

  10. x T d x T P − 1 ˙ x T P − 1 ˜ ˙ x + ˙ dtP − 1 ˜ V = ˜ ˜ ˜ x + ˜ x x T P − 1 ( A − PC T R − 1 C )˜ = ˜ x x T ( A T − C T R − 1 CP ) P − 1 ˜ + ˜ x x T P − 1 ˙ x T P − 1 ∆ PP − 1 ˜ − ˜ x + 2˜ x T P − 1 ( AP + PA T − PC T R − 1 CP − ˙ P ) P − 1 ˜ = ˜ x x T C T R − 1 C ˜ x T P − 1 ∆ − ˜ x + 2˜ x T ( P − 1 QP − 1 + C T R − 1 C )˜ x T P − 1 ∆ = − ˜ x + 2˜ x � 2 + c 2 k 1 � ˜ x || 3 + c 2 k 2 � ˜ ˙ x || 4 V ≤ − c 1 � ˜ ˙ V ≤ − 1 x � 2 , 2 c 1 � ˜ for � ˜ x � ≤ r Nonlinear Control Lecture # 31 Nonlinear Observers

  11. Example 11.1 x = A 1 x + B 1 [0 . 25 x 2 ˙ 1 x 2 + 0 . 2 sin 2 t ] , y = C 1 x � 0 � � 0 � 1 � � A 1 = , B 1 = , C 1 = 1 0 − 1 − 2 1 Investigate boundedness of x ( t ) P 1 = 1 � 3 � 1 P 1 A 1 + A T 1 P 1 = − I ⇒ 1 1 2 V ( x ) = x T P 1 x Nonlinear Control Lecture # 31 Nonlinear Observers

  12. − x T x + 2 x T P 1 B 1 [0 . 25 x 2 ˙ = 1 x 2 + 0 . 2 sin 2 t ] V −� x � 2 + 0 . 5 � P 1 B 1 � x 2 1 � x � 2 + 0 . 4 � P 1 B 1 �� x � ≤ −� x � 2 + x 2 � x � 2 + 0 . 4 1 = √ √ � x � 2 2 2 √ − 0 . 5 � x � 2 + 0 . 4 for x 2 ≤ √ 2 � x � , 1 ≤ 2 √ √ 2 � T = 2 P − 1 � � � 1 0 1 0 1 √ √ 2 } ⊂ { x 2 Ω = { V ( x ) ≤ 1 ≤ 2 } Nonlinear Control Lecture # 31 Nonlinear Observers

  13. Inside Ω − 0 . 5 � x � 2 + 0 . 4 ˙ √ V ≤ 2 � x � 0 . 4 − 0 . 15 � x � 2 , ≤ ∀ � x � ≥ √ 2 = 0 . 8081 0 . 35 √ (0 . 8081) 2 λ max ( P 1 ) < λ max ( P 1 ) = 1 . 7071 ⇒ 2 ⇒ {� x � ≤ 0 . 8081 } ⊂ Ω ⇒ Ω is positively invariant Design EKF to estimate x ( t ) for x (0) ∈ Ω Nonlinear Control Lecture # 31 Nonlinear Observers

  14. � � 0 1 A ( t ) = x 2 − 1 + 0 . 5ˆ x 1 ( t )ˆ x 2 ( t ) − 2 + 0 . 25ˆ 1 ( t ) � 1 0 � C = Q = R = P (0) = I P = AP + PA T + I − PC T CP, ˙ P (0) = I � p 11 � p 12 P = p 12 p 22 Nonlinear Control Lecture # 31 Nonlinear Observers

  15. ˙ ˆ = x 2 + p 11 ( y − ˆ ˆ x 1 ) x 1 ˙ x 2 x 2 ˆ = − ˆ x 1 − 2ˆ x 2 + 0 . 25ˆ 1 ˆ x 2 + 0 . 2 sin 2 t + p 12 ( y − ˆ x 1 ) 2 p 12 + 1 − p 2 ˙ = p 11 11 x 2 p 12 ˙ = p 11 ( − 1 + 0 . 5ˆ x 1 ˆ x 2 ) + p 12 ( − 2 + 0 . 25ˆ 1 ) + p 22 − p 11 p 12 x 2 ˙ = 2 p 12 ( − 1 + 0 . 5ˆ x 1 ˆ x 2 ) + 2 p 22 ( − 2 + 0 . 25ˆ 1 ) p 22 + 1 − p 2 12 Nonlinear Control Lecture # 31 Nonlinear Observers

  16. (a) (b) 1 x 1 1 p 11 x 2 Components of P(t) 0.5 0.8 Estimation Error 0.6 p 22 0 0.4 0.2 −0.5 0 p 12 −0.2 −1 −0.4 0 1 2 3 4 0 1 2 3 4 Time Time Nonlinear Control Lecture # 31 Nonlinear Observers

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend