nonlinear control lecture 21 special nonlinear forms
play

Nonlinear Control Lecture # 21 Special nonlinear Forms Nonlinear - PowerPoint PPT Presentation

Nonlinear Control Lecture # 21 Special nonlinear Forms Nonlinear Control Lecture # 21 Special nonlinear Forms Controller Form Definition A nonlinear system is in the controller form if x = Ax + B [ ( x ) + ( x ) u ] where ( A, B ) is


  1. Nonlinear Control Lecture # 21 Special nonlinear Forms Nonlinear Control Lecture # 21 Special nonlinear Forms

  2. Controller Form Definition A nonlinear system is in the controller form if x = Ax + B [ ψ ( x ) + γ ( x ) u ] ˙ where ( A, B ) is controllable and γ ( x ) is a nonsingular matrix for all x in the domain of interest u = γ − 1 ( x )[ − ψ ( x ) + v ] ⇒ x = Ax + Bv ˙ Any system that can be represented in the controller form is said to be feedback linearizable Nonlinear Control Lecture # 21 Special nonlinear Forms

  3. Example 8.7 ( m -link robot) M ( q )¨ q + C ( q, ˙ q ) ˙ q + D ˙ q + g ( q ) = u q is an m -dimensional vector of joint positions and M ( q ) is a nonsingular inertial matrix � 0 � 0 � q � � � I m x = , A = , B = q ˙ 0 0 I m ψ = − M − 1 ( C ˙ γ = M − 1 q + D ˙ q + g ) , Nonlinear Control Lecture # 21 Special nonlinear Forms

  4. An n -dimensional single-input system x = f ( x ) + g ( x ) u ˙ is transformable into the controller form if and only if ∃ h ( x ) such that x = f ( x ) + g ( x ) u, ˙ y = h ( x ) has relative degree n Search for a smooth function h ( x ) such that L g L i − 1 and L g L n − 1 h ( x ) = 0 , i = 1 , 2 , . . . , n − 1 , h ( x ) � = 0 f f � h ( x ) , L n − 1 h ( x ) � T ( x ) = col L f h ( x ) , · · · f Nonlinear Control Lecture # 21 Special nonlinear Forms

  5. The Lie Bracket: For two vector fields f and g , the Lie bracket [ f, g ] is a third vector field defined by [ f, g ]( x ) = ∂g ∂xf ( x ) − ∂f ∂xg ( x ) Notation: ad 0 f g ( x ) = g ( x ) , ad f g ( x ) = [ f, g ]( x ) ad k f g ( x ) = [ f, ad k − 1 g ]( x ) , k ≥ 1 f Properties: [ f, g ] = − [ g, f ] For constant vector fields f and g , [ f, g ] = 0 Nonlinear Control Lecture # 21 Special nonlinear Forms

  6. Example 8.8 � 0 � � � x 2 f = , g = − sin x 1 − x 2 x 1 � 0 � � 0 � � � � � 0 x 2 0 1 [ f, g ] = − 1 0 − sin x 1 − x 2 − cos x 1 − 1 x 1 � � − x 1 ad f g = [ f, g ] = x 1 + x 2 Nonlinear Control Lecture # 21 Special nonlinear Forms

  7. � � � � x 2 − x 1 f = , ad f g = − sin x 1 − x 2 x 1 + x 2 ad 2 f g = [ f, ad f g ] � − 1 � � � 0 x 2 = 1 1 − sin x 1 − x 2 � � � � 0 1 − x 1 − − cos x 1 − 1 x 1 + x 2 � � − x 1 − 2 x 2 = x 1 + x 2 − sin x 1 − x 1 cos x 1 Nonlinear Control Lecture # 21 Special nonlinear Forms

  8. Example 8.9 f ( x ) = Ax , g is a constant vector field ad f g = [ f, g ] = − Ag, ad 2 f g = [ f, ad f g ] = − A ( − Ag ) = A 2 g ad k f g = ( − 1) k A k g Distribution: For vector fields f 1 , f 2 , . . . , f k on D ⊂ R n , let ∆( x ) = span { f 1 ( x ) , f 2 ( x ) , . . . , f k ( x ) } The collection of all vector spaces ∆( x ) for x ∈ D is called a distribution and referred to by ∆ = span { f 1 , f 2 , . . . , f k } Nonlinear Control Lecture # 21 Special nonlinear Forms

  9. If dim(∆( x )) = k for all x ∈ D , we say that ∆ is a nonsingular distribution on D , generated by f 1 , . . . , f k A distribution ∆ is involutive if g 1 ∈ ∆ and g 2 ∈ ∆ ⇒ [ g 1 , g 2 ] ∈ ∆ If ∆ is a nonsingular distribution, generated by f 1 , . . . , f k , then it is involutive if and only if [ f i , f j ] ∈ ∆ , ∀ 1 ≤ i, j ≤ k Nonlinear Control Lecture # 21 Special nonlinear Forms

  10. Example 8.10 D = R 3 ; ∆ = span { f 1 , f 2 }     2 x 2 1  ,  , f 1 = 1 f 2 = 0 dim(∆( x )) = 2 , ∀ x ∈ D   0 x 2   0 [ f 1 , f 2 ] = ∂f 2 ∂x f 1 − ∂f 1 ∂x f 2 = 0   1 rank [ f 1 ( x ) , f 2 ( x ) , [ f 1 , f 2 ]( x )] =   2 x 2 1 0  = 3 , rank 1 0 0 ∀ x ∈ D  0 x 2 1 ∆ is not involutive Nonlinear Control Lecture # 21 Special nonlinear Forms

  11. Example 8.11 D = { x ∈ R 3 | x 2 1 + x 2 3 � = 0 } ; ∆ = span { f 1 , f 2 }     2 x 3 − x 1  , f 2 =  , dim(∆( x )) = 2 , ∀ x ∈ D f 1 = − 1 − 2 x 2   0 x 3   − 4 x 3 [ f 1 , f 2 ] = ∂f 2 ∂x f 1 − ∂f 1 ∂x f 2 = 2   0   2 x 3 − x 1 − 4 x 3  = 2 , rank − 1 − 2 x 2 2 ∀ x ∈ D  0 x 3 0 ∆ is involutive Nonlinear Control Lecture # 21 Special nonlinear Forms

  12. Theorem 8.2 The n -dimensional single-input system x = f ( x ) + g ( x ) u ˙ is feedback linearizable in a neighborhood of x 0 ∈ D if and only if there is a domain D x ⊂ D , with x 0 ∈ D x , such that 1 the matrix G ( x ) = [ g ( x ) , ad f g ( x ) , . . . , ad n − 1 g ( x )] has f rank n for all x ∈ D x ; 2 the distribution D = span { g, ad f g, . . . , ad n − 2 g } is f involutive in D x . Nonlinear Control Lecture # 21 Special nonlinear Forms

  13. Example 8.12 � a sin x 2 � 0 � � x = ˙ + u − x 2 1 1 � − a cos x 2 ad f g = [ f, g ] = − ∂f � ∂xg = 0 � 0 � − a cos x 2 [ g ( x ) , ad f g ( x )] = 1 0 rank[ g ( x ) , ad f g ( x )] = 2 , ∀ x such that cos x 2 � = 0 span { g } is involutive Find h such that L g h ( x ) = 0 , and L g L f h ( x ) � = 0 Nonlinear Control Lecture # 21 Special nonlinear Forms

  14. ∂h ∂xg = ∂h = 0 ⇒ h is independent of x 2 ∂x 2 L f h ( x ) = ∂h a sin x 2 ∂x 1 L g L f h ( x ) = ∂ ( L f h ) g = ∂ ( L f h ) = ∂h a cos x 2 ∂x ∂x 2 ∂x 1 ∂h L g L f h ( x ) � = 0 in D 0 = { x ∈ R 2 | cos x 2 � = 0 } if ∂x 1 � = 0 � � � � h x 1 Take h ( x ) = x 1 ⇒ T ( x ) = = L f h a sin x 2 Nonlinear Control Lecture # 21 Special nonlinear Forms

  15. Example 8.13 (A single link manipulator with flexible joints)     x 2 0 − a sin x 1 − b ( x 1 − x 3 ) 0     f ( x ) =  , g =     x 4 0    c ( x 1 − x 3 ) d   0 ad f g = [ f, g ] = − ∂f 0   ∂xg =   − d   0 Nonlinear Control Lecture # 21 Special nonlinear Forms

  16.   0 f g = [ f, ad f g ] = − ∂f bd   ad 2 ∂xad f g =   0   − cd   − bd f g ] = − ∂f 0 ad 3 f g = [ f, ad 2 ∂xad 2   f g =   cd   0   0 0 0 − bd 0 0 bd 0   rank  = 4   0 − d 0 cd  d 0 − cd 0 Nonlinear Control Lecture # 21 Special nonlinear Forms

  17. span( g, ad f g, ad 2 f g ) is involutive Why? The system is feedback linearizable. Find h ( x ) such that ∂ ( L i − 1 ∂ ( L 3 h ) f h ) f g = 0 , i = 1 , 2 , 3 , g � = 0 , h (0) = 0 ∂x ∂x ∂h ∂h ∂xg = 0 ⇒ = 0 ∂x 4 L f h ( x ) = ∂h x 2 + ∂h [ − a sin x 1 − b ( x 1 − x 3 )] + ∂h x 4 ∂x 1 ∂x 2 ∂x 3 ∂ ( L f h ) g = 0 ⇒ ∂ ( L f h ) = 0 ⇒ ∂h = 0 ∂x ∂x 4 ∂x 3 Nonlinear Control Lecture # 21 Special nonlinear Forms

  18. L f h ( x ) = ∂h x 2 + ∂h [ − a sin x 1 − b ( x 1 − x 3 )] ∂x 1 ∂x 2 f h ( x ) = ∂ ( L f h ) x 2 + ∂ ( L f h ) [ − a sin x 1 − b ( x 1 − x 3 )]+ ∂ ( L f h ) L 2 x 4 ∂x 1 ∂x 2 ∂x 3 ∂ ( L 2 f h ) = 0 ⇒ ∂ ( L f h ) = 0 ⇒ ∂h = 0 ∂x 4 ∂x 3 ∂x 2 ∂ ( L 3 f h ) ∂h g � = 0 ⇔ � = 0 ∂x ∂x 1   x 1 x 2   h ( x ) = x 1 , T ( x ) =   − a sin x 1 − b ( x 1 − x 3 )   − ax 2 cos x 1 − b ( x 2 − x 4 ) Nonlinear Control Lecture # 21 Special nonlinear Forms

  19. Example 8.14 ( Field-Controlled DC Motor)     d 1 ( − x 1 − x 2 x 3 + V a ) 0  , f e ∈ C 2 for x 2 ∈ J  , g = − d 2 f e ( x 2 ) d 2 f =   d 3 ( x 1 x 2 − bx 3 ) 0   d 1 d 2 x 3 d 2 ad f g = 2 f ′ e ( x 2 )   − d 2 d 3 x 1   d 1 d 2 x 3 ( d 1 + d 2 f ′ e ( x 2 ) − bd 3 ) e ( x 2 )) 2 − d 3 ad 2 d 3 f g = 2 ( f ′ 2 f 2 ( x 2 ) f ′′ e ( x 2 )   d 1 d 2 d 3 ( x 1 − V a ) − d 2 e ( x 2 ) − bd 2 d 2 2 d 3 x 1 f ′ 3 x 1 Nonlinear Control Lecture # 21 Special nonlinear Forms

  20. det G = − 2 d 2 1 d 3 2 d 3 x 3 ( x 1 − a )(1 − bd 3 /d 1 ) a = 1 2 V a / (1 − bd 3 /d 1 ) > 0 x 1 � = a and x 3 � = 0 ⇒ rank ( G ) = 3 [ g, ad f g ] = d 2 2 f ′′ e ( x 2 ) g ⇒ span { g, ad f g } is involutive The conditions of Theorem 8.2 are satisfied in the domain D x = { x 1 > a, x 2 ∈ J, x 3 > 0 } Find h ( x ) such that ∂ ( L 2 f h ) ∂h ∂ ( L f h ) ∂xg = 0; g = 0; g � = 0 ∂x ∂x Nonlinear Control Lecture # 21 Special nonlinear Forms

  21. ∂h ∂h ∂xg = 0 ⇒ = 0 ∂x 2 L f h ( x ) = ∂h d 1 ( − x 1 − x 2 x 3 + V a ) + ∂h d 3 ( x 1 x 2 − bx 3 ) ∂x 1 ∂x 3 ∂ ( L f h ) g = 0 ⇒ ∂ ( L f h ) ∂h ∂h = 0 ⇒ − d 1 x 3 + d 3 x 1 = 0 ∂x ∂x 2 ∂x 1 ∂x 3 Take h = d 3 x 2 1 + d 1 x 2 3 + c L f h ( x ) = 2 d 1 d 3 x 1 ( V a − x 1 ) − 2 bd 1 d 3 x 2 3 L 2 f h ( x ) = 2 d 2 1 d 3 ( V a − 2 x 1 )( − x 1 − x 2 x 3 + V a ) − 4 bd 1 d 2 3 x 3 ( x 1 x 2 − bx 3 ) ∂ ( L 2 ∂ ( L 2 f h ) f h ) = 4 d 2 g = d 2 1 d 2 d 3 (1 − bd 3 /d 1 ) x 3 ( x 1 − a ) � = 0 ∂x ∂x 2 Nonlinear Control Lecture # 21 Special nonlinear Forms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend