nonlinear control lecture 34 output feedback stabilization
play

Nonlinear Control Lecture # 34 Output Feedback Stabilization - PowerPoint PPT Presentation

Nonlinear Control Lecture # 34 Output Feedback Stabilization Nonlinear Control Lecture # 34 Output Feedback Stabilization High-Gain Observers Example 12.3 x 1 = x 2 , x 2 = ( x, u ) , y = x 1 State feedback control: u = ( x )


  1. Nonlinear Control Lecture # 34 Output Feedback Stabilization Nonlinear Control Lecture # 34 Output Feedback Stabilization

  2. High-Gain Observers Example 12.3 x 1 = x 2 , ˙ x 2 = φ ( x, u ) , ˙ y = x 1 State feedback control: u = γ ( x ) stabilizes the origin of x 1 = x 2 , ˙ x 2 = φ ( x, γ ( x )) ˙ High-gain observer ˙ ˙ x, u ) + ( α 2 /ε 2 )( y − ˆ x 1 = ˆ ˆ x 2 + ( α 1 /ε )( y − ˆ x 1 ) , ˆ x 2 = φ 0 (ˆ x 1 ) φ 0 is a nominal model of φ , α i > 0 , 0 < ε ≪ 1 � b � � be − at/ε , ε 2 cM � εe − at/ε , εcM | ˜ x 1 | ≤ max , | ˜ x 2 | ≤ max Nonlinear Control Lecture # 34 Output Feedback Stabilization

  3. The bound on ˜ x 2 demonstrates the peaking phenomenon, which might destabilize the closed-loop system Example: x 2 = x 3 x 1 = x 2 , ˙ ˙ 2 + u, y = x 1 State feedback control: u = − x 3 2 − x 1 − x 2 Output feedback control: x 3 u = − ˆ 2 − ˆ x 1 − ˆ x 2 ˙ ˙ x 2 = (1 /ε 2 )( y − ˆ x 1 = ˆ ˆ x 2 + (2 /ε )( y − ˆ x 1 ) , ˆ x 1 ) Nonlinear Control Lecture # 34 Output Feedback Stabilization

  4. 0.5 0 SFB OFB ε = 0.1 −0.5 x 1 OFB ε = 0.01 −1 OFB ε = 0.005 −1.5 −2 0 1 2 3 4 5 6 7 8 9 10 1 0 −1 x 2 −2 −3 0 1 2 3 4 5 6 7 8 9 10 0 −100 u −200 −300 −400 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t Nonlinear Control Lecture # 34 Output Feedback Stabilization

  5. ε = 0 . 004 0.2 0 x 1 −0.2 −0.4 −0.6 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 −200 x 2 −400 −600 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 2000 1000 u 0 −1000 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 t Nonlinear Control Lecture # 34 Output Feedback Stabilization

  6. Closed-loop system under state feedback: � 0 � 1 x = Ax, ˙ A = − 1 − 1 � � 1 . 5 0 . 5 PA + A T P = − I ⇒ P = 0 . 5 1 Suppose x (0) belongs to the positively invariant set Ω = { V ( x ) ≤ 0 . 3 } | u | ≤ | x 2 | 3 + | x 1 + x 2 | ≤ 0 . 816 , ∀ x ∈ Ω Saturate u at ± 1 Nonlinear Control Lecture # 34 Output Feedback Stabilization

  7. x 3 u = sat( − ˆ 2 − ˆ x 1 − ˆ x 2 ) SFB 0.15 OFB ε = 0.1 OFB ε = 0.01 0.1 OFB ε = 0.001 x 1 0.05 0 −0.05 0 1 2 3 4 5 6 7 8 9 10 0.05 0 x 2 −0.05 −0.1 0 1 2 3 4 5 6 7 8 9 10 0 u −0.5 −1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t Nonlinear Control Lecture # 34 Output Feedback Stabilization

  8. Region of attraction under state feedback: 2 1 x 2 0 −1 −2 −3 −2 −1 0 1 2 3 x 1 Nonlinear Control Lecture # 34 Output Feedback Stabilization

  9. Region of attraction under output feedback: 1 0.5 x 2 0 −0.5 −1 −2 −1 0 1 2 x 1 ε = 0 . 08 (dashed) and ε = 0 . 01 (dash-dot) Nonlinear Control Lecture # 34 Output Feedback Stabilization

  10. Analysis of the closed-loop system: x 1 ˙ = x 2 x 2 ˙ = φ ( x, γ ( x − ˜ x )) ε ˙ η 1 = − α 1 η 1 + η 2 ε ˙ η 2 = − α 2 η 1 + εδ ( x, ˜ x ) η ✻ O (1 /ε ) q q ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ O ( ε ) ❉ ❉ ❲ ❲ ✲ ✛ ✲ Ω b x ✛ ✲ Ω c Nonlinear Control Lecture # 34 Output Feedback Stabilization

  11. General case w ˙ = ψ ( w, x, u ) x i ˙ = x i +1 + ψ i ( x 1 , . . . , x i , u ) , 1 ≤ i ≤ ρ − 1 x ρ ˙ = φ ( w, x, u ) y = x 1 z = q ( w, x ) φ (0 , 0 , 0) = 0 , ψ (0 , 0 , 0) = 0 , q (0 , 0) = 0 ψ i satisfies a global Lipschitz condition. The normal form and models of mechanical and electromechanical systems take this form with ψ 1 = · · · = ψ ρ = 0 Why the extra measurement z ? Nonlinear Control Lecture # 34 Output Feedback Stabilization

  12. In many problems, we can measure some state variables in addition to y Magnetic levitation system x 1 ˙ = x 2 4 cx 2 3 x 2 ˙ = − bx 2 + 1 − (1 + x 1 ) 2 1 � βx 2 x 3 � x 3 ˙ = − x 3 + u + T ( x 1 ) (1 + x 1 ) 2 Typical measurements are the ball position x 1 and the current x 3 Nonlinear Control Lecture # 34 Output Feedback Stabilization

  13. Stabilizing state feedback controller: ˙ ϑ = Γ( ϑ, x, z ) , u = γ ( ϑ, x, z ) γ and Γ are globally bounded functions of x Closed-loop system ˙ X = f ( X ) , X = col( w, x, ϑ ) Output feedback controller ˙ ϑ = Γ( ϑ, ˆ x, z ) , u = γ ( ϑ, ˆ x, z ) Nonlinear Control Lecture # 34 Output Feedback Stabilization

  14. Observer x i , u ) + α i ˙ x i ˆ = x i +1 + ψ i (ˆ ˆ x 1 , . . . , ˆ ε i ( y − ˆ x 1 ) , 1 ≤ i ≤ ρ − 1 x, u ) + α ρ ˙ x ρ ˆ = φ 0 ( z, ˆ ε ρ ( y − ˆ x 1 ) ε > 0 and α 1 to α ρ are chosen such that the roots of s ρ + α 1 s ρ − 1 + · · · + α ρ − 1 s + α ρ = 0 have negative real parts Nonlinear Control Lecture # 34 Output Feedback Stabilization

  15. Separation Principle Theorem 12.2 Suppose the origin of ˙ X = f ( X ) is asymptotically stable and R is its region of attraction. Let S be any compact set in the interior of R and Q be any compact subset of R ρ . Then, given any µ > 0 there exist ε ∗ > 0 and T ∗ > 0 , dependent on µ , such that for every 0 < ε ≤ ε ∗ , the solutions ( X ( t ) , ˆ x ( t )) of the closed-loop system, starting in S × Q , are bounded for all t ≥ 0 and satisfy �X ( t ) � ≤ µ and � ˆ x ( t ) � ≤ µ, ∀ t ≥ T ∗ �X ( t ) − X r ( t ) � ≤ µ, ∀ t ≥ 0 where X r is the solution of ˙ X = f ( X ) , starting at X (0) Nonlinear Control Lecture # 34 Output Feedback Stabilization

  16. If the origin of ˙ X = f ( X ) is exponentially stable, then the origin of the closed-loop system is exponentially stable and S × Q is a subset of its region of attraction Nonlinear Control Lecture # 34 Output Feedback Stabilization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend