instantons and sphalerons in a magnetic field
play

Instantons and Sphalerons in a Magnetic Field G ok ce Ba sar - PowerPoint PPT Presentation

Instantons and Sphalerons in a Magnetic Field G ok ce Ba sar Stony Brook University 08/17/2012 Quark Matter 2012, Washington D.C. GB, G.Dunne & D. Kharzeev , arXiv:1112.0532, PRD 85 045026 GB, D. Kharzeev, arXiv:1202.2161, PRD 85


  1. Instantons and Sphalerons in a Magnetic Field G¨ ok¸ ce Ba¸ sar Stony Brook University 08/17/2012 Quark Matter 2012, Washington D.C. GB, G.Dunne & D. Kharzeev , arXiv:1112.0532, PRD 85 045026 GB, D. Kharzeev, arXiv:1202.2161, PRD 85 086012 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  2. Magnetic field generated in heavy ion collisions ∼ m 2 π combined with: ◮ Axial Anomaly ⇒ C.M.E. (charge separation) C.M.W. (charge dependent v 2 ) ◮ Conformal Anomaly ⇒ photon v 2 (Ba¸ sar, Kharzeev, Skokov, arXiv:1206.1334) 0.16 0.14 0.12 0.1 v2 0.08 0.06 0.04 0.02 0 0 0.5 1 1.5 2 2.5 p ⊥ , GeV (talk by V. Skokov at xQCD, 08/22) G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  3. Part I Instanton in a Magnetic Field G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  4. Motivation & some lattice results Interplay between topology & magnetic field ◮ Chiral magnetic effect � J ∝ µ 5 � B ◮ What sources µ 5 ? sphalerons, η domains, etc.. ◮ Instanton + magnetic field ◮ Lattice results ◮ ITEP group (electric & dipole moments) ◮ T. Blum et al. (zero modes ∝ B) ◮ A. Yamamoto (C.M. conductivity) (Polikarpov et al. ’09) G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  5. Notation & conventions work in: ❘ 4 � 0 � � ✶ � α µ 0 chiral basis: γ µ = , γ 5 = α µ ¯ 0 0 − ✶ σ ) = α † α µ = ( ✶ , − i� σ ) , α µ = ( ✶ , i� ¯ µ � 0 � � � 0 α µ D µ D Dirac operator: / D = ≡ − D † α µ D µ ¯ 0 0 gauge field: A µ = A µ + a µ G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  6. Notation & conventions � DD † � 0 � 2 ψ λ = ψ λ = λ 2 ψ λ � i/ diagonal form: D D † D 0 DD † = −D 2 χ = +1 : µ − F µν ¯ σ µν D † D = −D 2 χ = − 1 : µ − F µν σ µν ”supersymmetry:” for λ � = 0, DD † and D † D has identical spectra D . . . . . . D † χ = -1 χ = +1 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  7. Instanton & magnetic field DD † = −D 2 D † D = −D 2 µ − Bσ 3 , , µ − F µν σ µν − Bσ 3 Zero modes: Both spins, both chiralities � � � � F µν ˜ F µν ˜ Index thm: tr F µν = tr F µν G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  8. Instanton & magnetic field DD † = −D 2 D † D = −D 2 µ − Bσ 3 , , µ − F µν σ µν − Bσ 3 Zero modes: Both spins, both chiralities � � � � F µν ˜ F µν ˜ Index thm: tr F µν = tr F µν ( F � = ˜ N + − N − � = − N − F ) G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  9. Instanton & magnetic field DD † = −D 2 D † D = −D 2 µ − Bσ 3 , , µ − F µν σ µν − Bσ 3 Zero modes: Both spins, both chiralities � � � � F µν ˜ F µν ˜ Index thm: tr F µν = tr F µν ( F � = ˜ N + − N − � = − N − F ) Competition between instanton and magnetic field G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  10. Instanton & magnetic field DD † = −D 2 D † D = −D 2 µ − Bσ 3 , , µ − F µν σ µν − Bσ 3 Zero modes: Both spins, both chiralities � � � � F µν ˜ F µν ˜ Index thm: tr F µν = tr F µν ( F � = ˜ N + − N − � = − N − F ) Competition between instanton and magnetic field ↓ ↓ try to align chiralities align spins G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  11. Instanton zero mode: | ψ 0 | 2 = 64 ρ 2 ( x 2 + ρ 2 ) 3 192 ρ 4 Topological charge: q 5 ( x ) = ( x 2 + ρ 2 ) 4 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  12. Instanton zero mode: | ψ 0 | 2 = 64 ρ 2 ( x 2 + ρ 2 ) 3 192 ρ 4 Topological charge: q 5 ( x ) = ( x 2 + ρ 2 ) 4 B field zero mode: | ψ 0 | 2 ∝ f ( x 1 + ix 2 ) e − B | x 1 + ix 2 | 2 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  13. Instanton zero mode: | ψ 0 | 2 = 64 ρ 2 ( x 2 + ρ 2 ) 3 192 ρ 4 Topological charge: q 5 ( x ) = ( x 2 + ρ 2 ) 4 B field zero mode: | ψ 0 | 2 ∝ f ( x 1 + ix 2 ) e − B | x 1 + ix 2 | 2 B G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  14. ✶ Large instanton limit 1 suppose: B << ρ √ G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  15. ✶ Large instanton limit 1 suppose: B << ρ √ instanton is slowly varying → can do derivative expansion G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  16. ✶ Large instanton limit 1 suppose: B << ρ √ instanton is slowly varying → can do derivative expansion η a µν x ν x 2 + ρ 2 ≈ 2 A a ρ 2 η a µ = 2 µν x ν + . . . G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  17. Large instanton limit 1 suppose: B << ρ √ instanton is slowly varying → can do derivative expansion η a µν x ν x 2 + ρ 2 ≈ 2 A a ρ 2 η a µ = 2 µν x ν + . . . after appropriate gauge rotation & Lorentz transformation: 2 ( − x 2 , x 1 , − x 4 , x 3 ) τ 3 + B A µ = − F 2 ( − x 2 , x 1 , 0 , 0) ✶ 2 × 2 quasi-abelian, covariantly constant → soluble! G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  18. Large instanton limit 2 ( − x 2 , x 1 , − x 4 , x 3 ) τ 3 + B A µ = − F 2 ( − x 2 , x 1 , 0 , 0) ✶ 2 × 2 � B − F � 0 F 12 = 0 B + F � − F 0 � F 34 = 0 F Landau problem with field strengths F 12 & F 34 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  19. Large instanton limit 2 ( − x 2 , x 1 , − x 4 , x 3 ) τ 3 + B A µ = − F 2 ( − x 2 , x 1 , 0 , 0) ✶ 2 × 2 � B − F � 0 F 12 = 0 B + F � − F 0 � F 34 = 0 F Landau problem with field strengths F 12 & F 34 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  20. Zero modes τ = − 1 , χ = − 1 , spin ↑ , n − = ( B + F ) F 2 π 2 π τ = +1 , χ = +1 , spin ↑ , n + = ( B − F ) F 2 π 2 π n + − n − = − F 2 n + + n − = B F , 2 π 2 2 π 2 F B+F x 1 x 3 x 2 x 4 -F B-F x 1 x 3 x 4 x 2 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  21. Dipole moments 2 � ¯ 3 = � ¯ 3 = 1 σ M σ E ψ Σ 12 ψ � , ψ Σ 34 ψ � G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  22. Dipole moments 2 � ¯ 3 = � ¯ 3 = 1 σ M σ E ψ Σ 12 ψ � , ψ Σ 34 ψ � � σ 3 � � − σ 3 � 0 0 Σ 12 = , Σ 34 = 0 σ 3 0 σ 3 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  23. Dipole moments 2 � ¯ 3 = � ¯ 3 = 1 σ M σ E ψ Σ 12 ψ � , ψ Σ 34 ψ � � σ 3 � � − σ 3 � 0 0 Σ 12 = , Σ 34 = 0 σ 3 0 σ 3 m 2 m 2 � � � � m � ¯ ψ Σ 12 ψ � = tr 2 × 2 σ 3 + tr 2 × 2 σ 3 m 2 + DD † m 2 + D † D m 2 m 2 � � � � m � ¯ ψ Σ 34 ψ � = − tr 2 × 2 σ 3 + tr 2 × 2 σ 3 m 2 + DD † m 2 + D † D G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  24. Dipole moments 2 � ¯ 3 = � ¯ σ M 3 = 1 σ E ψ Σ 12 ψ � , ψ Σ 34 ψ � � σ 3 � � − σ 3 � 0 0 Σ 12 = , Σ 34 = 0 σ 3 0 σ 3 BF m � ¯ ψ Σ 12 ψ � ≈ 2 π 2 F 2 m � ¯ ψ Σ 34 ψ � ≈ 2 π 2 � � F � ¯ ψ Σ 34 ψ ¯ ψ Σ 34 ψ � ≈ B 2 π 2 m 2 L 4 σ M 3 > σ E ◮ 3 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  25. Part II Sphaleron Rate in a Magnetic Field G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  26. Sphaleron rate (basics) � g 2 Γ CS = (∆ Q 5 ) 2 a ( x ) g 2 � � d 4 x µν ˜ αβ ˜ 32 π 2 F a F µν 32 π 2 F a F αβ = a (0) V t dt = − c N 5 Γ CS Diffusion of topological charge: dN 5 T 3 ◮ CP odd effects in QCD (CME) ◮ Baryon number (B+L) violation in E.W. Weak coupling: Γ CS = κ g 4 T log(1 /g ) ( g 2 T ) 3 (B¨ odeker ’98) Strong coupling: Γ CS = ( g 2 N ) 2 256 π 3 T 4 (Son, Starinets ’02) G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  27. Sphaleron rate with B field (holography) Gauge theory in magnetic field ⇔ Einstein-Maxwell theory Dynamics with magnetic field ⇔ Self-consistent solutions 2 r B >> T h r boundary AdS BTZ , T =T H AdS 5 R.G. flow IR UV CFT 1+1d CFT (temp=T) 3+1d CFT (N=4) G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  28. Sphaleron rate with B field(holography) � � � � T^2 � � 1.6 1.5 1.4 1.3 1.2 1.1 � 5 10 15 20 T 2 ( g 2 N ) 2 � �  T 4 + 6 π 4 B 2 + O ( B 4 1 B << T 2 T 2 ) , 256 π 3    Γ CS = ( g 2 N ) 2 � �  B T 2 + 15 . 9 T 4 + O ( T 6 B >> T 2  √ B ) ,  3 π 5 384 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  29. Sphaleron rate with B field (holography) B ∼ T 2 ◮ for B = T 2 the effect is ∼ %0 . 2 ◮ it is safe to ignore the effects of B field on Γ CS for CME estimates G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

  30. Sphaleron rate with B field (holography) B >> T 2 ( g 2 N ) 2 B π × T 2 Γ CS = √ 384 3 π 4 G¨ ok¸ ce Ba¸ sar Instantons and Sphalerons in a Magnetic Field

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend