how to form a millisecond magnetar magnetic field
play

How to form a millisecond magnetar ? Magnetic field amplification - PowerPoint PPT Presentation

How to form a millisecond magnetar ? Magnetic field amplification in protoneutron stars Jrme Guilet Max-Planck-Princeton Center for plasma physics (MPA, Garching) collaborators Ewald Mller, Thomas Janka, Oliver Just (MPA Garching)


  1. How to form a millisecond magnetar ? Magnetic field amplification in protoneutron stars Jérôme Guilet Max-Planck-Princeton Center for plasma physics (MPA, Garching) collaborators Ewald Müller, Thomas Janka, Oliver Just (MPA Garching) Andreas Bauswein (Heidelberg) Tomasz Rembiasz, Martin Obergaulinger, Pablo Cerda-Duran, Miguel Angel Alloy (Valencia) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 1/33

  2. Plan of the talk 1. Introduction : Magnetic fields in core collapse supernovae 2. Can the magnetorotational instability grow ? Linear analysis → Effects of neutrino radiation 3. How strong is the final magnetic field ? Numerical simulations → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations 4. Conclusion & perspectives Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 2/33

  3. Core collapse: formation of a neutron star Introduction Massive star Hydrogen Explosion NS NS Helium 600 millions km Oxygen Iron ? Iron  -sphere Stalled accretion Iron 40 km 3000 km NS shock 1.4 M sol Neutrino emission Collapse of the iron core Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 3/33

  4. A diversity of explosions Introduction Explosion kinetic energy : → Typical supernova 10 51 ergs → Neutrino driven explosions ? e.g. Bruenn+14, Melson+15 → Rare hypernova (& GRB) 10 52 ergs → Millisecond magnetar ? e.g. Burrows+07, Takiwaki+09,11 Bucciantini+09, Metzger+11 Total luminosity : → Typical supernova 10 49 ergs → Superluminous supernovae 10 51 ergs → Millisecond magnetar ? e.g. Woosley+10, Dessart+12, Nicholl+13, Inserra+13 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 4/33

  5. Magnetic explosions ? Introduction Strong magnetic field: B ~ 10 15 G + fast rotation (period of few milliseconds) => powerful jet-driven explosions ! e.g. Sibata+06, Burrows+07, Dessart+08, Takiwaki+09,11, Winteler+12 Burrows+07 But in 3D, jets can be unstable to kink instability Moesta+2014 Open question: Can magnetic explosions explain hypernovae ? Moesta+14 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 5/33

  6. Are millisecond magnetars powering Introduction superluminous supernovae ? Delayed energy injection by magnetar spin- down on timescale of weeks-months => very high luminosity Light curves can be fitted by: - strong dipole magnetic field: B ~ 10 14 -10 15 G - fast rotation: P ~ 1-10 ms Talk by Ken Chen last week Inserra+2013 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 6/33

  7. Galactic magnetars Introduction Magnetars: Anomalous X-ray pulsars (AXP) Soft gamma repeater (SGR) Strong dipole magnetic field: B ~ 10 14 -10 15 G Slow rotation: P ~ 1-10 s Typical age: 10 4 -10 5 years Talks by Michael Gabler & Pablo Cerda-Duran Rotation at birth unknown: were some or all of them born as millisecond magnetars ? Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 7/33

  8. Missing theoretical piece: Introduction magnetic field origin Huge range of magnetic field strength : → Initially « weak » magnetic field : ( ? ) → After compression by the core-collapse: ( ? ) → Magnetar strength : Amplification mechanism ? Magnetorotational instability (MRI) ? Convective dynamo ? Similar to accretion disks Similar to solar & planetary dynamos → application to protoneutron stars → need of numerical simulations for neutron stars Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 8/33

  9. The magnetorotational instability (MRI) Introduction B In ideal MHD (i.e. no resistivity or viscosity) : Condition for MRI growth Growth rate : with → Fast growth for fast rotation Wavelength : → Short wavelength for weak magnetic field Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 9/33

  10. Rotation profile in the proto-neutron star Introduction Hydrostatic Infalling matter proto-neutron star Rotation frequency profile : → Differential rotation at radii > 10 km Rotation frequency decreases with radius : => MRI unstable ! Akiyama et al (2003) Obergaulinger et al (2009) Radius (km) Ott et al (2006) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 10/33

  11. Proto-neutron stars vs disks conditions Introduction Main differences between proto-neutron stars and accretion disks: → Neutrinos: viscosity and drag → Prevent MRI growth ? → Buoyancy: radial entropy and composition gradients → Impact on magnetic field amplification by MRI ? → Geometry: spherical vs thin disk → Help global coherence ? neutrinos ! Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 11/33

  12. 2. Can the magnetorotational instability (MRI) grow ? Effects of neutrino radiation Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 12/33

  13. Effects of neutrino radiation : two regimes MRI growth density scaleheight neutrino mean free path diffusive regime : neutrino viscosity optically thin regime : neutrino drag Neutron star structure from a simulation by Hanke et al (2013) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 13/33

  14. MRI with neutrino viscosity MRI growth ideal MRI viscous MRI viscous ideal MRI MRI Too slow Dimensionless number : e.g. Pessah & Chan (2008) MRI growth requires a minimum initial magnetic field strength of > 10 12 G... Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 14/33

  15. MRI with neutrino drag MRI growth ideal MRI ideal « dragged » « dragged » MRI MRI MRI Neutrino drag : , with damping rate : The MRI can grow near the PNS surface from any weak field strength ! Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 15/33

  16. MRI growth: different regimes MRI growth Guilet et al (2015) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 16/33

  17. Application to neutron star mergers MRI growth massive torus neutron star Guilet+2016 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 17/33

  18. 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 18/33

  19. magnetic field Numerical simulations: local models amplification - Small box : ~km size at a radius r ~ 20-40 km - Differential rotation => shearing periodic boundary conditions - Entropy/composition gradients + - Different numerical methods : spectral or finite volume - Fully compressible or quasi-incompressible approximation Obergaulinger+2009, Masada+2012, Guilet+2015, Rembiasz+2016a,b Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 19/33

  20. Channel mode termination by parasitic magnetic field amplification instabilities Rembiasz et al. 2016a&b Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 20/33

  21. 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 21/33

  22. Buoyancy from entropy and lepton MRI & buoyancy fraction gradients Brünt-Väisälä frequency : Linear analysis of MRI with buoyancy : stable buoyancy can stabilise the MRI But : thermal diffusion allows the growth Balbus & Hawley (1994), Menou et al (2003), radial displacement suppressed radial displacement favored Masada et al (2007) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 22/33

  23. Linear MRI growth with buoyancy MRI & buoyancy Low thermal diffusion High thermal diffusion Confirms linear analysis : thermal diffusion by neutrinos allows fast MRI growth Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 23/33

  24. Impact of stratification on the MRI MRI & buoyancy unstable buoyancy stable stratification color: azimuthal magnetic field units of (10 15 G) 2 Magnetic energy low diffusion high diffusion buoyancy parameter Guilet & Müller (2015) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 24/33

  25. 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 25/33

  26. Magnetic Prandtl Dependence on the magnetic Prandtl number number Neutrino viscosity : Resistivity : Magnetic Prandtl number : Previous simulations used : Behaviour at very large magnetic Prandtl number ? Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 26/33

  27. Magnetic Prandtl Dependence on the magnetic Prandtl number number Magnetic energy units of (10 15 G) 2 Behaviour at very large magnetic Prandtl number ? Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 27/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend