nonlinear control lecture 22 special nonlinear forms
play

Nonlinear Control Lecture # 22 Special nonlinear Forms Nonlinear - PowerPoint PPT Presentation

Nonlinear Control Lecture # 22 Special nonlinear Forms Nonlinear Control Lecture # 22 Special nonlinear Forms Observer Form Definition A nonlinear system is in the observer form if x = Ax + ( y, u ) , y = Cx where ( A, C ) is observable


  1. Nonlinear Control Lecture # 22 Special nonlinear Forms Nonlinear Control Lecture # 22 Special nonlinear Forms

  2. Observer Form Definition A nonlinear system is in the observer form if x = Ax + ψ ( y, u ) , ˙ y = Cx where ( A, C ) is observable Observer: ˙ x = A ˆ ˆ x + ψ ( y, u ) + H ( y − C ˆ x ) x = x − ˆ ˜ x ˙ x = ( A − HC )˜ ˜ x Design H such that ( A − HC ) is Hurwitz Nonlinear Control Lecture # 22 Special nonlinear Forms

  3. Example 8.15 (A single link manipulator with flexible joints)     x 2 0 − a sin x 1 − b ( x 1 − x 3 ) 0     x = ˙  + y = x 1  u,     x 4 0   c ( x 1 − x 3 ) d x = Ax + ψ ( u, y ) , ˙ y = Cx     0 1 0 0 0 − b 0 0 − a sin y b     A = ψ =  ,     0 0 0 1 0    c 0 − c 0 du � 1 0 � 0 0 C = . . . , ( A, C ) is observable Nonlinear Control Lecture # 22 Special nonlinear Forms

  4. Example 8.16 (Inverted pendulum) x 1 = x 2 , ˙ x 2 = a (sin x 1 + u cos x 1 ) , ˙ y = x 1 x = Ax + ψ ( u, y ) , ˙ y = Cx � 0 � � � 1 0 A = , ψ = 0 0 a (sin y + u cos y ) � 1 0 � C = Nonlinear Control Lecture # 22 Special nonlinear Forms

  5. m � x = f ( x ) + ˙ g i ( x ) u i , y = h ( x ) i =1 Is there z = T ( x ) such that m � z = A c z + φ ( y ) + ˙ γ i ( y ) u i , y = C c z i =1  0 1 0 . . . 0  0 0 1 0 . . .   . . ...   . . � � A c = . . , C c = 1 0 . . . 0 0     . .   . 0 1   0 0 0 . . . . . . Nonlinear Control Lecture # 22 Special nonlinear Forms

  6. x = f ( x ) , ˙ y = h ( x )     h ( x ) y L f h ( x ) ˙ y     Φ( x ) =  =  .   .  . .  .    .    L n − 1 y ( n − 1) h ( x ) f   z 1 z 2 + F 1 ( z 1 )   ˜ Φ( z ) = Φ( x ) | x = T − 1 ( z ) =  .  .   .   z n + F n − 1 ( z 1 , . . . , z n − 1 ) Nonlinear Control Lecture # 22 Special nonlinear Forms

  7. ∂ ˜ ∂T − 1 ∂z = ∂ Φ Φ ∂x ∂z   1 0 · · · 0 ∗ 1 0 0   ∂ ˜ Φ . .   . . ∂z =  . .      ∗ · · · ∗ 1 0   ∗ · · · ∗ 1 ∂ Φ ∂x must be nonsingular Nonlinear Control Lecture # 22 Special nonlinear Forms

  8. ∂ Φ � � ∂x τ = b, b = col 0 , · · · 0 , 1 L τ L n − 1 L τ L k f h ( x ) = 0 , 0 ≤ k ≤ n − 2 , h ( x ) = 1 f Equivalently τ h ( x ) = ( − 1) n − 1 L ad k f τ h ( x ) = 0 , 0 ≤ k ≤ n − 2 , L ad n − 1 f τ k = ( − 1) n − k ad n − k Define τ, 1 ≤ k ≤ n f � τ 1 ∂T � τ 2 · · · τ n = I ∂x Nonlinear Control Lecture # 22 Special nonlinear Forms

  9.  0  . . .     0   ∂T   def ∂x τ k = e k = 1 ← k th row     0     . .   .   0 ( − 1) n − k ∂T τ = ( − 1) n − k ∂T ∂x ad n − k ∂x [ f, ad n − k − 1 = τ ] e k f f f ( z ) , ( − 1) n − k − 1 e k +1 ] = ∂ ˜ f ( − 1) n − k [ ˜ = ∂z e k +1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  10.  ∗ 1 0 . . . 0  ∗ 0 1 0 . . .   ∂ ˜ . . f ...   . . . . ∂z =     . .   . 0 1   ∗ 0 0 . . . . . . By integration ˜ f ( z ) = A c z + φ ( z 1 ) Nonlinear Control Lecture # 22 Special nonlinear Forms

  11. ∂ ˜ ∂T − 1 ∂z = ∂h h ˜ h ( z ) = h ( T − 1 ( z )) , ∂x ∂z ∂T − 1 � τ 1 � = · · · τ 2 τ n x = T − 1 ( z ) ∂z ∂ ˜ h � � ( − 1) n − 1 L ad n − 1 ( − 1) n − 2 L ad n − 2 τ h, τ h, · · · L τ h ∂z = f f ∂ ˜ � 1 , h ˜ 0 � ∂z = 0 , · · · ⇒ h = z 1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  12. Theorem 8.3 An n -dimensional single-output (SO) systems x = f ( x ) , ˙ y = h ( x ) is transformable into the observer form if and only if there is a domain D 0 such that ∀ x ∈ D 0 � ∂ Φ � � h, L n − 1 h � rank ∂x ( x ) = n, Φ = col L f h, · · · f and the unique vector field solution τ of � 0 , ∂ Φ · · · 0 , 1 � ∂x τ = b, b = col [ ad i f τ, ad j satisfies f τ ] = 0 , 0 ≤ i, j ≤ n − 1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  13. m � x = f ( x ) + ˙ g i ( x ) u i , y = h ( x ) i =1 � g i ( z ) = ∂T � When will ˜ ∂x g i ( x ) be independent of z 2 to z n ? � � x = T − 1 ( z ) g i , ( − 1) n − k − 1 e k +1 ] = ( − 1) n − k ∂ ˜ ∂T g i ∂x [ g i , ad n − k − 1 τ ] = [˜ f ∂z k +1 ∂ ˜ g i = 0 ⇔ [ g i , ad n − k − 1 τ ] = 0 f ∂z k +1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  14. Corollary 8.1 Suppose the assumptions of Theorem 8.3 are satisfied. Then, the change of variables z = T ( x ) transforms the system into the observer form if and only if [ g i , ad k f τ ] = 0 , , for 0 ≤ k ≤ n − 2 and 1 ≤ i ≤ m Moreover, if for some i the foregoing condition is strengthened to [ g i , ad k f τ ] = 0 , , for 0 ≤ k ≤ n − 1 then the vector field γ i is constant Nonlinear Control Lecture # 22 Special nonlinear Forms

  15. Example 8.17 � � � � β 1 ( x 1 ) + x 2 b 1 x = ˙ + y = x 1 u, f 2 ( x ) b 2 � � � � h ( x ) x 1 Φ( x ) = = L f h ( x ) β 1 ( x 1 ) + x 2 � � � ∂ Φ � ∂ Φ 1 0 ∂x = ; rank ∂x ( x ) = 2 , ∀ x ∂β 1 1 ∂x 1 � 0 � 0 ∂ Φ � � ∂x τ = ⇒ τ = 1 1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  16. � ∗ � � 0 � � � ad f τ = [ f, τ ] = − ∂f 1 1 ∂xτ = − = − ∂f 2 ∂f 2 ∗ 1 ∂x 2 ∂x 2 � � � 0 0 � [ τ, ad f τ ] = ∂ ( ad f τ ) 0 τ = − ∂ 2 f 2 ∂ 2 f 2 1 ∂x ∂x 2 ∂x 1 ∂x 2 2 [ τ, ad f τ ] = 0 ⇔ ∂ 2 f 2 = 0 ⇔ f 2 ( x ) = β 2 ( x 1 ) + x 2 β 3 ( x 1 ) ∂x 2 2 [ g, τ ] = 0 ( g and τ are constant vector fields) � � b 1 � 0 0 � = 0 if ∂β 3 [ g, ad f τ ] = = 0 or b 1 = 0 − ∂β 3 0 b 2 ∂x 1 ∂x 1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  17. � � 1 τ 1 = ( − 1) 1 ad 1 f τ = − ad f τ = β 3 ( x 1 ) � � 0 τ 2 = ( − 1) 0 ad 0 f τ = τ = 1 � τ 1 , ∂T � τ 2 = I ∂x ∂T 1 ∂T 1   � � � � ∂x 1 ∂x 2 1 0 1 0 =   β 3 ( x 1 ) 1 0 1 ∂T 2 ∂T 2 ∂x 1 ∂x 2 ∂T 1 = 0 and ∂T 1 = 1 ⇒ T 1 = x 1 ∂x 2 ∂x 1 Nonlinear Control Lecture # 22 Special nonlinear Forms

  18. ∂T 2 = 1 and ∂T 2 + β 3 ( x 1 ) = 0 ∂x 2 ∂x 1 � x 1 ⇒ T 2 ( x ) = x 2 − β 3 ( σ ) dσ 0 z = Az + φ ( y ) + γ ( y ) u, ˙ y = Cz � 0 � 1 � � A = C = 1 0 , 0 0 � β 1 ( y ) + � y � � � 0 β 3 ( σ ) dσ b 1 φ = , γ = β 2 ( y ) − β 1 ( y ) β 3 ( y ) b 2 − b 1 β 3 ( y ) Nonlinear Control Lecture # 22 Special nonlinear Forms

  19. Special Case: SISO system x = f ( x ) + g ( x ) u, ˙ y = h ( x ) Suppose the assumptions of Corollary 8.1 hold with [ g, ad k f τ ] = 0 , , for 0 ≤ k ≤ n − 1 z = T ( x ) → ˙ z = A c z + φ ( y ) + γu, y = C c z � T , γ ρ � = 0 � Rel deg = ρ ⇔ γ = 0 , 0 , . . . , γ ρ , . . . , γ n Minimum Phase ⇔ γ ρ s n − ρ + · · · + γ n − 1 s + γ n Hurwitz Nonlinear Control Lecture # 22 Special nonlinear Forms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend