updates on nada stability analysis and impact of feedback
play

Updates on NADA: Stability Analysis and Impact of Feedback Intervals - PowerPoint PPT Presentation

Updates on NADA: Stability Analysis and Impact of Feedback Intervals draft-ietf-rmcat-nada-02 Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, Sergio Mena de la Cruz, Paul Jones, Jiantao Fu, Stefano DAronco, and Charles Ganzhorn IETF-95 | Buenos


  1. Updates on NADA: Stability Analysis and Impact of Feedback Intervals draft-ietf-rmcat-nada-02 Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, Sergio Mena de la Cruz, Paul Jones, Jiantao Fu, Stefano D’Aronco, and Charles Ganzhorn IETF-95 | Buenos Aires, Argentina | 2016-04-06 1

  2. Outline • Update on draft -02 • Stability analysis of NADA feedback control loop • Numerical results on NADA with varying feedback intervals • Simulation results on NADA with varying feedback intervals • Summary and next steps 2

  3. Changes in Draft -02 • No algorithm changes • Added a section on feedback requirements of NADA in Sec. 5.3 • Addressed review comments from Stefan and Zahed (Thanks!) • Minor adjustment in notations, fixed various errors and typos. 3

  4. Outline • Update on draft -02 • Stability analysis of NADA feedback control loop • Numerical results on NADA with varying feedback intervals • Simulation results on NADA with varying feedback intervals • Summary and next steps 4

  5. Simplifying Assumptions for Stability Analysis • Considers only gradual rate update mode, w/o packet losses or marking: x_curr = d_queue • Ignores effect of 15-tap minimum filtering • Rate update equation reduces to (see Eq(5)-(7) in draft): x o = PRIOR MAX x ref r o r i = r i − 1 − κ ∆ x i − x o r i − 1 − κη x i − x i − 1 r i − 1 τ τ τ r i − r i − 1 = − κ τ [ x i − x o + η x i − x i − 1 ] r i − 1 ∆ ∆ τ 5

  6. Feedback Control Loop in Laplace Transform queuing delay δ x 1 X sC i − System at equilibrium: delayed r o = PRIOx ref e − sRT T R max feedback x o For single flow: 1 + η s τ r o τ r o = C 1 + x o κ x o s τ gradual rate update 6

  7. Open Loop Transfer Function e − sRT T 1 + η s τ G ( s ) = − r o 1 + C κ x o s τ τ sx o At low frequency, s → 0 s → j ∞ At high frequency, e − sRT T G ( s ) ≈ − κη r o RTT G ( s ) ≈ − r o RTT C sRTT τ C x o Guarantees stability for Bandwidth sharing proportional to PRIOR max κη RTT < π ητ >> 1 and 2 τ 7

  8. Outline • Update on draft -02 • Stability analysis of NADA feedback control loop • Numerical results on NADA with varying feedback intervals • Simulation results on NADA with varying feedback intervals • Open Issues and next steps 8

  9. Bode Diagram with Gain/Phase Margins propagation delay = 50ms bottleneck BW = 1Mbps feedback interval feedback interval @ 100ms @ 1s 9

  10. Bode Diagram with Gain/Phase Margins propagation delay = 50ms bottleneck BW = 1Mbps feedback interval feedback interval @ 100ms @ 1s 10

  11. Step Response of Closed-Loop System propagation delay = 50ms bottleneck BW = 1Mbps 11

  12. Step Response with Feedback Interval @ 100ms propagation delay = 50ms bottleneck BW = 1Mbps 12

  13. Step Response with Feedback Interval @ 200ms propagation delay = 50ms bottleneck BW = 1Mbps 13

  14. Step Response with Feedback Interval @ 500ms propagation delay = 50ms bottleneck BW = 1Mbps 14

  15. Settling Time vs. Feedback Interval propagation delay = 50ms 15

  16. Outline • Update on draft -02 • Stability analysis of NADA feedback control loop • Numerical results on NADA with varying feedback intervals • Simulation results on NADA with varying feedback intervals • Open Issues and next steps 16

  17. Propagation Delay @ 50ms, Feedback Interval = 20ms NS2: physical link rate change NS3: time-varying background UDP flow 17

  18. Propagation Delay @ 50ms, Feedback Interval = 50ms NS2: physical link rate change NS3: time-varying background UDP flow 18

  19. Propagation Delay @ 50ms, Feedback Interval = 100ms NS2: physical link rate change NS3: time-varying background UDP flow 19

  20. Propagation Delay @ 50ms, Feedback Interval = 200ms NS2: physical link rate change NS3: time-varying background UDP flow 20

  21. Propagation Delay @ 50ms, Feedback Interval = 500ms NS2: physical link rate change NS3: time-varying background UDP flow 21

  22. Propagation Delay @ 50ms, Feedback Interval = 1s NS2: physical link rate change NS3: time-varying background UDP flow 22

  23. Propagation Delay @ 50ms, Feedback Interval = 2s NS2: physical link rate change NS3: time-varying background UDP flow instable instable 23

  24. Propagation Delay @ 150ms, Feedback Interval = 20ms NS2: physical link rate change NS3: time-varying background UDP flow 24

  25. Propagation Delay @ 150ms, Feedback Interval = 200ms NS2: physical link rate change NS3: time-varying background UDP flow 25

  26. Propagation Delay @ 150ms, Feedback Interval = 2s NS2: physical link rate change NS3: time-varying background UDP flow instable instable 26

  27. Convergence Time vs. Feedback Interval NS2: Transition after t=120s NS3: Transition after t=120s Overhead ~ 1.6 % @ 1Mbps 27

  28. Summary and Next Steps • Guaranteed stability of NADA feedback control loop for RTT < 500ms • Qualitatively matching results from numerical analysis and simulation results: • Remains stable for sub-second feedback intervals • System response slows down with increasing feedback intervals • Recommended feedback interval at 100ms — tradeoff between overhead and response speed • Next steps: • Investigate different convergence behavior with different BW changing mechanisms; • Study system stability with varying parameter choice and network settings 28

  29. Backup Slides 29

  30. Derivation of Laplace Transfer Function for Gradual Rate Update δ x = x i − x o , δ r = r i − r o Consider small perturbation around equilibrium: r = − κ τ [ δ xr o + x o δ r κ x o r = − κ r o τ [ δ x δ ˙ + ηδ ˙ xr o ] τ 2 δ r + δ ˙ τ + ητδ ˙ x ] τ τ In Laplace domain: R ( s ) 1 + ητ s X ( s ) = − r o τ 2 ( R ( s ) + τ 2 κ x o sR ( s )) = − κ r o τ 2 ( X ( s ) + ητ sX ( s )) 1 + τ x o κ x o s τ κ x o 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend