mixed signal vlsi design course code ee719 department
play

Mixed-Signal VLSI Design Course Code: EE719 Department: Electrical - PowerPoint PPT Presentation

Mixed-Signal VLSI Design Course Code: EE719 Department: Electrical Engineering Lecture 14: February 11, 2020 Instructor Name: M. Shojaei Baghini E-Mail ID: mshojaei@ee.iitb.ac.in 1 2 2 Module 15 Introduction to Quantization (Analog to


  1. Mixed-Signal VLSI Design Course Code: EE719 Department: Electrical Engineering Lecture 14: February 11, 2020 Instructor Name: M. Shojaei Baghini E-Mail ID: mshojaei@ee.iitb.ac.in 1

  2. 2 2 Module 15 Introduction to Quantization (Analog to Digital Conversion) References: Chapter 5, the Data Conversion Handbook, Analog • Devices, 2005. Chapter: Oversampling Converters, First two sections: • Oversampling without and with Noise Shaping, Analog Integrated Circuit Design, T. C. Caruson, D. A. Johns and K. W. Martin, 2012 “The delta sigma modulator”, B. Razavi’s article in IEEE • SSC Magazine, Spring 2016 IIT-Bombay Lecture 14 M. Shojaei Baghini

  3. 3 3 Ideal Characteristics of DAC/ADC D : LSB size Starting from DAC =>? @ : ×2 : / 012_456 = ∆ 9 DAC (I) :;< Type equation here. b i : bit # i Center point Analog input range • 1 LSB May be [-V FS /2,V FS /2]. ADC (II) Signed output code • may be used. IIT-Bombay Lecture 14 M. Shojaei Baghini

  4. 4 4 Quantization Error in Ideal ADC q e (t) … … t Example: N=6 bits Þ SQNR=37.9dB N=10 bits Þ SQNR=62.0dB 2 D 2 V # 2 = = q FS ( ) $ % & $, ( )$ = ! e 2 12 ´ N 2 12 "# For a sinusoidal signal V = x FS x(t) and approximate rms 2 2 ∆/% ∆ )$ = ∆ % $ % 1 uniform distribution of q e . ! æ ö 2 x 12 ç ÷ = = + SQNR 10 log rms 6 . 02 N 1 . 76 dB "∆/% ç ÷ 2 q è ø e IIT-Bombay Lecture 14 M. Shojaei Baghini

  5. 5 5 Modelling of Quantization Noise LSB size: Δ Figure: Ken Martin’s book Approximation: e(n) is assumed as random white noise, i.e. uniform power density distribution across all frequencies. IIT-Bombay Lecture 14 M. Shojaei Baghini

  6. 6 6 Digital Filtering of the Noise Figure: Boris Murmann Filtering the noise beyond signal frequency band Total quantization noise power is reduced by the factor • (f s /2)/f B which is called oversampling ratio . IIT-Bombay Lecture 14 M. Shojaei Baghini

  7. 7 7 SQNR Improvement by Oversampling SQNR = 6.02N + 1.76 + 10log(OSR) Example: OSR=2 - SQNR is increased by a factor 2 in linear scale (3 dB increase in dB scale). - Resolution is increased by 0.5 bit. OSR=4 ⇒ 1 bit extra resolution (6 dB) OSR=16 ⇒ 2 bit extra resolution (12 dB) OSR=64 ⇒ 3 bit extra resolution (18 dB) - This is similar to averaging (not precisely since averaging is not an ideal LPF). IIT-Bombay Lecture 14 M. Shojaei Baghini

  8. 8 8 Is Oversampling Enough? Assume f B = 500 kHz and ADC resolution = 8 bits. Target resolution: 14 bits ⇒ Required OSR = 2 (6/0.5) = 4096 ⇒ f s = 4096 × 2 × 0.5 MHz = 4.096 GHz! IIT-Bombay Lecture 14 M. Shojaei Baghini

  9. 9 9 Module 16 Resolution Enhancement using Oversampling and Noise Shaping References: • Sections: Ovrsampling with and without Noise Shaping, Analog Integrated Circuit Design T. C. Caruson, D. A. Johns and K. W. Martin, 2012 • “The delta sigma modulator”, B. Razavi’s article in IEEE SSC Magazine, Spring 2016 IIT-Bombay Lecture 14 M. Shojaei Baghini

  10. 10 10 Quantizer Output in Single-Bit ∆" Modulator Two numerical examples in the class (bit stream generation) • Pulse width and density depend on the signal level (modulation) • Tone generation issue IIT-Bombay Lecture 14 M. Shojaei Baghini

  11. 11 11 1st Order Discrete-Time Integrator for 1st Order Noise Shaping Integrator gain à ∞ as z à 1 (i.e. Ω à 0) ⇒ " # − % # ⇒ 0 (i.e. average steady state error ⇒ 0 ) IIT-Bombay Lecture 14 M. Shojaei Baghini

  12. 12 12 Discrete-Time Model Using A First Order Filter A(z) |A(z)| ≫ 1 ⇒ |STF| ≈ 1 and |NTF| ≪ 1 in the signal frequency band Delayed input Y(z) = (1-Z -1 ) E(z) + z -1 X(z) IIT-Bombay Lecture 14 M. Shojaei Baghini

  13. 13 13 Reducing Quantization Noise by High-Pass Filtering of the Noise High-pass filtering of the noise and low-pass filtering of • the quantized signal: Practical concept using feedback Figure: Boris Murmann IIT-Bombay Lecture 14 M. Shojaei Baghini

  14. 14 14 Discrete-Time Integrator First Order Loop Figure: Boris Murmann Integrator gain à ∞ as z à 1 (i.e. Ω à 0) IIT-Bombay Lecture 14 M. Shojaei Baghini

  15. 15 15 Complete Block Diagram of Oversampling ∆" ADC Figure: K. Martin’s book High- Low-resolution Simple resolution Not oversampled filter Nyquist rate required digital signal digital signal always IIT-Bombay Lecture 14 M. Shojaei Baghini

  16. 16 16 Details of 1 st Order NTF (Noise Transfer Function) 1st order noise shaping !"# $% = ' ( $% = )($%) ,($%) IIT-Bombay Lecture 14 M. Shojaei Baghini

  17. 17 17 SQNR for 1 st Order NTF ∆: LSB size < ⟹ + ,-./01 ≊ ∆ 3 12 × 7 3 1 3 9:; 3 2 ? ∆ 1 < = 3 2 ×2 3? × 3 2 2 7 3 ×9:; < :=>; ≊ 12 × 7 3 ∆ 3 1 For sinusoidal waveform 3 9:; IIT-Bombay Lecture 14 M. Shojaei Baghini

  18. 18 18 SQNR for 1 st Order NTF ' '(∆ & 1 1 ' ' 2 ×2 24 × 5 ' ×678 1 • SQNR ≊ , = ∆' &' × +' & , -./ • SQNR (dB) ≊ 1.76 + 6.02? − 5.2 + 30log(678) Amount of improvement • H à 2M ⇒ SQNR à SQNR + 9dB Equivalent to 1.5 bits per octave oversampling IIT-Bombay Lecture 14 M. Shojaei Baghini

  19. 19 19 End of Lecture 14 IIT-Bombay Lecture 14 M. Shojaei Baghini

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend