what do noisy datapoints tell us about the true signal
play

What do noisy datapoints tell us about the true signal? C. R. Hogg - PowerPoint PPT Presentation

Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What do noisy datapoints tell us about the true signal? C. R. Hogg November 16, 2011 1/31


  1. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What is Bayesian Analysis? Essence of Bayes: • 2 questions for every guess (i.e. every θ ) 1. How likely does it make the actual data ? “LIKELIHOOD” 2. How plausible is it? “PRIOR” • Combine them to answer the main question : 1. What is your new probability, now that you’ve seen the data? “POSTERIOR” (Rev. Thomas Bayes, c. 1701 – 1761) 6/31

  2. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What is Bayesian Analysis? Essence of Bayes: • 2 questions for every guess (i.e. every θ ) 1. How likely does it make the actual data ? “LIKELIHOOD” 2. How plausible is it? “PRIOR” • Combine them to answer the main question : 1. What is your new probability, now that you’ve seen the data? “POSTERIOR” (Rev. Thomas Bayes, c. 1701 – 1761) 6/31

  3. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Likelihood of function p ( y | f ) • Example: artificial dataset 40 • Noise model: Poisson Intensity (number of counts) p ( y | f ) = f y e − f y ! 20 • Assume independent pixels 0 0.0 0.5 1.0 Scattering vector Q (1/A) 7/31

  4. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Likelihood of function p ( y | f ) • Example: artificial dataset 40 • Noise model: Poisson Intensity (number of counts) p ( y | f ) = f y e − f y ! 20 • Assume independent pixels 0 0.0 0.5 1.0 Scattering vector Q (1/A) 7/31

  5. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Likelihood of function p ( y | f ) • Example: artificial dataset 40 • Noise model: Poisson Intensity (number of counts) p ( y | f ) = f y e − f y ! 20 • Assume independent pixels 0 0.0 0.5 1.0 Scattering vector Q (1/A) 7/31

  6. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Likelihood of function p ( y | f ) • Example: artificial dataset 40 • Noise model: Poisson Intensity (number of counts) p ( y | f ) = f y e − f y ! 20 • Assume independent pixels 0 0.0 0.5 1.0 Scattering vector Q (1/A) 7/31

  7. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Likelihood of function p ( y | f ) • Example: artificial dataset 40 • Noise model: Poisson Intensity (number of counts) p ( y | f ) = f y e − f y ! 20 • Assume independent pixels • Problem: not plausible • (What makes a function 0 “plausible”?) 0.0 0.5 1.0 Scattering vector Q (1/A) 7/31

  8. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) • Assume smooth and continuous • No functional form assumed 8/31

  9. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  10. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  11. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  12. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  13. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  14. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  15. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “Plausibility” of function p ( f ) 40 Intensity (number of counts) • Assume smooth and continuous • No functional form 20 assumed • Naturally: unrelated to data 0 0.0 0.5 1.0 Scattering vector Q (1/A) 8/31

  16. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) 40 • “Best of both worlds”: Intensity (number of counts) a Plausible curves, which b fit the data 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 9/31

  17. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) 40 • “Best of both worlds”: Intensity (number of counts) a Plausible curves, which b fit the data 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 9/31

  18. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) 40 • “Best of both worlds”: Intensity (number of counts) a Plausible curves, which b fit the data 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 9/31

  19. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) 40 • “Best of both worlds”: Intensity (number of counts) a Plausible curves, which b fit the data 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 9/31

  20. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) 40 • “Best of both worlds”: Intensity (number of counts) a Plausible curves, which b fit the data 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 9/31

  21. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) 40 • “Best of both worlds”: Intensity (number of counts) a Plausible curves, which b fit the data 20 • To represent uncertainty: show many guesses • (Or, summarize them. . . ) 0 0.0 0.5 1.0 Scattering vector Q (1/A) 9/31

  22. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) Quantitative uncertainty visuals Noisy Data 40 35 Intensity (no. of counts) 30 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 Q (1/A) 9/31

  23. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior probability p ( f | y ) Quantitative uncertainty visuals Noisy Data 40 True Curve! 35 Intensity (no. of counts) 30 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 Q (1/A) 9/31

  24. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recap: Bayesian denoising Plausible curves 40 Intensity (number of counts) 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 10/31

  25. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recap: Bayesian denoising Curves which fit the data 40 Intensity (number of counts) 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 10/31

  26. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recap: Bayesian denoising Plausible curves which fit the data 40 Intensity (number of counts) 20 0 0.0 0.5 1.0 Scattering vector Q (1/A) 10/31

  27. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity • calculate probabilities for its values 11/31

  28. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , • calculate probabilities for its values • take “random draws” (roll the die, flip the coin. . . ) 11/31

  29. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , • calculate probabilities for its values • take “random draws” (roll the die, flip the coin. . . ) 11/31

  30. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , • calculate probabilities for its values • take “random draws” (roll the die, flip the coin. . . ) 11/31

  31. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , • calculate probabilities for its values • take “random draws” (roll the die, flip the coin. . . ) 11/31

  32. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values • take “random draws” (roll the die, flip the coin. . . ) 11/31

  33. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , • take “random draws” (roll the die, flip the coin. . . ) 11/31

  34. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , • take “random draws” (roll the die, flip the coin. . . ) 11/31

  35. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , • take “random draws” (roll the die, flip the coin. . . ) 11/31

  36. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) 11/31

  37. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  38. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  39. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  40. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  41. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  42. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  43. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  44. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random variables; Random functions 1 1 1 1 1 p = 1 6 6 6 6 6 6 • Random variable F : an uncertain quantity F = , , , , , • calculate probabilities for its values , , , , . . . • take “random draws” (roll the die, flip the coin. . . ) • Random function F ( x ) ? F(x) 11/31 x

  45. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values F(x) 12/31

  46. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values F(x) 12/31

  47. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  48. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  49. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  50. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  51. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  52. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  53. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  54. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation F(x) 12/31

  55. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation • co rrelation × variance : covariance F(x) 12/31

  56. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to think about “random functions”? • Function: a collection of individual values • Every value is a random variable, with. . . 1. variance 2. correlation • co rrelation × variance : covariance • Gaussian Process: F(x) • Every point is a Random Variable • Any (finite) subset has Gaussian joint distribution 12/31

  57. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix • How to read the matrix? 0 Cov 2500 100 1 0 2 -100 0 3 0 1 2 3 0 1 2 3 X X 13/31

  58. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix • How to read the matrix? 1. By individual entries 0 Cov 2500 100 1 0 2 -100 0 3 0 1 2 3 0 1 2 3 X X 13/31

  59. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix • How to read the matrix? 1. By individual entries 0 Cov 2500 100 1 0 2 -100 0 3 0 1 2 3 0 1 2 3 X X 13/31

  60. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix • How to read the matrix? 1. By individual entries 0 Cov 2500 100 1 0 2 -100 0 3 0 1 2 3 0 1 2 3 X X 13/31

  61. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix • How to read the matrix? 1. By individual entries 0 Cov 2500 2. As a whole 100 1 (central stripe) 0 • Intensity: 2 height of features -100 0 3 • Width: 0 1 2 3 0 1 2 3 X X width of features 13/31

  62. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix 0 Stripe Intensity = Feature Height 100 1 0 2 • How to read the matrix? -100 3 0 1 2 3 0 1 2 3 X X 1. By individual entries 0 Cov 2500 2. As a whole 100 1 (central stripe) 0 • Intensity: 2 height of features -100 0 3 • Width: 0 1 2 3 0 1 2 3 X X width of features 13/31

  63. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to read a Covariance Matrix 0 Stripe Intensity = Feature Height 100 1 0 2 • How to read the matrix? -100 3 0 1 2 3 0 1 2 3 X X 1. By individual entries 0 Cov 2500 2. As a whole 100 1 (central stripe) 0 • Intensity: 2 height of features -100 0 3 • Width: 0 1 2 3 0 1 2 3 X X width of features 0 Stripe Width = Feature Width 100 1 0 2 -100 3 0 1 2 3 0 1 2 3 X X 13/31

  64. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example 1: Hydrocarbon combustion (Dave Sheen and Wing Tsang, NIST, Div. 632) Hydrocarbon burning simulations • Need (many!) reaction rate constants • Measured individually • Predictions are precise, quantitative 14/31

  65. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example 1: Hydrocarbon combustion (Dave Sheen and Wing Tsang, NIST, Div. 632) Hydrocarbon burning simulations • Need (many!) reaction rate constants • Measured individually • Predictions are precise, quantitative, wrong 14/31

  66. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydrocarbon combustion: flame speed experiments • Datapoints (from several experiments) Flame speed 40 30 Speed (cm/s) 20 10 0 0.6 0.8 1.0 1.2 1.4 1.6 Fuel-to-oxygen ratio 15/31

  67. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydrocarbon combustion: flame speed experiments • Datapoints (from several experiments) • Model : lengthscales Flame speed ℓ and σ f 40 30 Speed (cm/s) 20 10 0 0.6 0.8 1.0 1.2 1.4 1.6 Fuel-to-oxygen ratio 15/31

  68. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydrocarbon combustion: flame speed experiments • Datapoints (from several experiments) • Model : lengthscales Flame speed ℓ and σ f 40 • ± 1 σ range 30 Speed (cm/s) 20 10 0 0.6 0.8 1.0 1.2 1.4 1.6 Fuel-to-oxygen ratio 15/31

  69. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydrocarbon combustion: flame speed experiments • Datapoints (from several experiments) • Model : lengthscales Flame speed ℓ and σ f 40 • ± 1 σ range 30 Speed (cm/s) • See also: individual curves 20 10 0 0.6 0.8 1.0 1.2 1.4 1.6 Fuel-to-oxygen ratio 15/31

  70. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydrocarbon combustion: flame speed experiments • Datapoints (from several experiments) • Model : lengthscales Flame speed ℓ and σ f 40 • ± 1 σ range 30 Speed (cm/s) • See also: individual curves 20 • But where did this model come from. . . ? 10 0 0.6 0.8 1.0 1.2 1.4 1.6 Fuel-to-oxygen ratio 15/31

  71. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor, intro • William of Occam c. 1288 - c. 1348 • Gave us Occam’s Razor 16/31

  72. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor, intro • William of Occam c. 1288 - c. 1348 • Gave us Occam’s Razor • (slightly paraphrased in the name of science) 16/31

  73. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor, intro • William of Occam c. 1288 - c. 1348 • Gave us Occam’s Razor • (slightly paraphrased in the name of science) • Claim: use probability , get this automatically • (And, quantitative , too!) 16/31

  74. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor, intro • William of Occam c. 1288 - c. 1348 • Gave us Occam’s Razor MODEL 1: • (slightly paraphrased in flat the name of science) • Claim: use probability , get this automatically • (And, quantitative , too!) • Example: 3 models. . . 16/31

  75. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor, intro • William of Occam c. 1288 - c. 1348 • Gave us Occam’s Razor MODEL 2: • (slightly paraphrased in flat + line the name of science) • Claim: use probability , get this automatically • (And, quantitative , too!) • Example: 3 models. . . 16/31

  76. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor, intro • William of Occam c. 1288 - c. 1348 • Gave us Occam’s Razor MODEL 3: • (slightly paraphrased in flat + line + wiggle the name of science) • Claim: use probability , get this automatically • (And, quantitative , too!) • Example: 3 models. . . 16/31

  77. Overview Bayesian Analysis Gaussian Processes Scattering Curves Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occam’s razor in action • Some models can explain more datasets 17/31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend