multi parameter regularization for ill posed problems
play

Multi-parameter regularization for ill-posed problems with noisy - PowerPoint PPT Presentation

Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Multi-parameter regularization for ill-posed problems with noisy right hand side and noisy operator Ulrich Tautenhahn University of


  1. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Multi-parameter regularization for ill-posed problems with noisy right hand side and noisy operator Ulrich Tautenhahn University of Applied Sciences Zittau/Görlitz, Germany http://www.hs-zigr.de/matnat/MATH/tautenhahn/index.html Talk presented at the AIP 2009 Vienna, July 20 – 24 Joint work with Sergei Pereverzev and Shuai Lu, RICAM Linz U. Tautenhahn, Multi-parameter regularization, AIP 2009 1/21

  2. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Content 1 Introduction 2 What is • Total Least Squares (TLS)? • Regularized Total Least Squares (RTLS)? • Dual Regularized Total Least Squares (DRTLS)? 3 What it has to do with multi-parameter regularization? 4 Are there any error bounds for RTLS and DRTLS? 5 How to compute the RTLS and the DRTLS solution? 6 Conclusions U. Tautenhahn, Multi-parameter regularization, AIP 2009 2/21

  3. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions 1 Introduction Problem formulation, notational issues Consider linear ill-conditioned systems x † − unknown (generalized) solution A 0 x = y 0 A 0 ∈ L ( R n , R m ) (generally m ≥ n ) ( A 0 , y 0 ) − error-free data and 1 y δ – given noisy right hand side with � y 0 − y δ � 2 ≤ δ 2 A h – given noisy system matrix with � A 0 − A h � F ≤ h � Ill-conditioning: � y 0 − y δ � 2 ≤ δ �⇒ � x † − x δ,h � 2 ≤ ε � A 0 − A h � F ≤ h U. Tautenhahn, Multi-parameter regularization, AIP 2009 3/21

  4. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions 2 TLS, RTLS and DRTLS Least Squares for A h x ≈ y δ Recall that in the LS problem we solve min x � A h x − y δ � 2 . Alternatively, we look for x, y such that y = A h x : min x,y � y − y δ � 2 subject to y = A h x Total Least Squares for A h x ≈ y δ TLS takes care for perturbations in A h : � A − A h � 2 F + � y − y δ � 2 � � min subject to y = Ax 2 x,y,A Hence, we look for x , y , A to make the system compatible. U. Tautenhahn, Multi-parameter regularization, AIP 2009 4/21

  5. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions How to compute the TLS solution x TLS ? n +1 � v i σ i u T 1 Compute the SVD of ( A h | y δ ) m,n +1 = i i =1 2 Partition U = ( u 1 u 2 ... | u n +1 ) as � U 11 | U 12 � n U = U 21 | U 22 1 3 Then, if U 22 � = 0 , x TLS = − 1 U 12 . U 22 Alternatively, if σ n +1 �∈ σ ( A T h A h ) , x TLS = ( A T h A h − σ n +1 I ) − 1 A T h y δ . U. Tautenhahn, Multi-parameter regularization, AIP 2009 5/21

  6. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Tikhonov regularization Remember different formulations: � � A h x − y δ � 2 2 + α � Bx � 2 � (i) min 2 x h A h + αB T B A T x = A T � � (ii) h y δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (iii) min x � A h x − y δ � 2 subject to � Bx � 2 ≤ R (iv) min x � Bx � 2 subject to � A h x − y δ � 2 ≤ δ Question: How to introduce TLS in the Tikhonov setting? U. Tautenhahn, Multi-parameter regularization, AIP 2009 6/21

  7. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Regularized TLS (RTLS) Introduce TLS in the Tikhonov setting (iii) as follows: � A − A h � 2 F + � y − y δ � 2 � � min subject to y = Ax, 2 x,y,A � Bx � 2 ≤ R Dual RTLS Introduce TLS in the Tikhonov setting (iv) as follows: x,y,A � Bx � 2 min subject to y = Ax, 2 � y − y δ � 2 ≤ δ, � A − A h � F ≤ h U. Tautenhahn, Multi-parameter regularization, AIP 2009 7/21

  8. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Some references on TLS and RTLS Huffel, S. V. and Vanderwalle, J. (1991) The TLS Problem: Computational Aspects and Analysis Philadelphia: SIAM Golub, G. H., Hansen, P. C. and O’Leary, D. P. (1999) Tikhonov regularization and total least squares SIAM J. Matrix Anal. Appl. 21, 185 - 194 Further references on RTLS: Sima, D., Huffel, S. V. and Golub, G. H. (2004), Renaut, R. A. and Guo, H. (2005), Beck, A. and Ben-Tal, A. (2006), Beck, A. and Ben-Tal, A. and Teboulle, M. (2006), Sima, D. (2006), Lu, S. and Pereverzev, S. V. and Tautenhahn, U. (2007), Lampe, J. and Voss, H. (2007,2009) U. Tautenhahn, Multi-parameter regularization, AIP 2009 8/21

  9. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Some references on DRTLS Lu, S. and Pereverzev, S. V. and Tautenhahn, U. (2007) Regularized total least squares: computational aspects and error bounds RICAM-Preprint 2007-30, SIAM J. Matrix Anal. (accepted) Lu, S. and Pereverzev, S. V. and Tautenhahn, U. (2008) Dual regularized total least squares and multi-parameter regularization Comput. Meth. Appl. Math. 8, 253–262 Lu, S. and Pereverzev, S. V. and Tautenhahn, U. (2008) A model function method in total least squares RICAM-Preprint 2008-18 U. Tautenhahn, Multi-parameter regularization, AIP 2009 9/21

  10. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions 3 RTLS, DRTLS and Multi-parameter regularization? Theorem 1 (RTLS and multi-parameter regularization) Consider the RTLS problem � � A − A h � 2 F + � y − y δ � 2 � min subject to y = Ax, 2 x,y,A � Bx � 2 ≤ R. If the constraint is active, then the solution x RTLS = x R α,β can be obtained by multi-parameter regularization � A h x − y δ � 2 2 + α � Bx � 2 2 + β � x � 2 2 → min where ( α, β ) obey � y δ − A h x R α,β � 2 2 � Bx R α,β � 2 = R and β = − . 1 + � x R α,β � 2 2 U. Tautenhahn, Multi-parameter regularization, AIP 2009 10/21

  11. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Properties in the general case B � = I Let x = x RTLS be given by h A h + αB T B + βI ) x = A T ( A T h y δ Depending on the choice of R , the solutions are related by R α β solutions R < � Bx T LS � 2 x RT LS � = x T LS α > 0 β < 0 , ∂β/∂R > 0 β = − σ 2 R ≥ � Bx T LS � 2 x RT LS = x T LS α = 0 n +1 • No equivalent interpretation with Tikhonov setting (iii) • Multi-parameter regularization with β < 0 • De-regularization due to the negativity of β U. Tautenhahn, Multi-parameter regularization, AIP 2009 11/21

  12. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Theorem 2 (DRTLS and multi-parameter regularization) Consider the DRTLS problem x,y,A � Bx � 2 min subject to y = Ax, 2 � y − y δ � 2 ≤ δ, � A − A h � F ≤ h. If the constraints are active, then the solution x DRTLS = x δ,h α,β can be obtained by multi-parameter regularization � A h x − y δ � 2 2 + α � Bx � 2 2 + β � x � 2 2 → min where the parameters α and β obey hδ β = − h 2 − � A h x δ,h α,β − y δ � 2 = δ + h � x δ,h α,β � 2 and . � x δ,h α,β � 2 U. Tautenhahn, Multi-parameter regularization, AIP 2009 12/21

  13. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Ideas of proof 1 Use classical Lagrange multiplier formulation: L ( x, A, µ, ν ) = � Bx � 2 2 + µ ( � Ax − y δ � 2 2 − δ 2 )+ ν ( � A − A h � 2 F − h 2 ) 2 Optimality conditions: 2 B T Bx + 2 µA T ( Ax − y δ ) = 0 L x = 2 µ ( Ax − y δ ) x T + 2 ν ( A − A h ) = 0 L A = 2 − δ 2 = 0 � Ax − y δ � 2 L µ = F − h 2 = 0 � A − A h � 2 L ν = 3 Manipulation of these equations gives h ( A h x − y δ ) x T A = A h − � ( A h x − y δ ) x T � F 4 Further manipulation gives our characterization result U. Tautenhahn, Multi-parameter regularization, AIP 2009 13/21

  14. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions 6 Error bounds • A 0 ∈ L ( X, Y ) with non-closed range R ( A 0 ) • X, Y – Hilbert spaces • B – strictly pos. self-adjoint (unbounded) operator in X Assumption A1 (Link condition between A 0 and B − 1 ) m � B − a x � ≤ � A 0 x � for some a > 0 , m > 0 Assumption A2 (Solution smoothness) x † ∈ M B,E = x ∈ X : � B p x � ≤ E � � for some p > 0 U. Tautenhahn, Multi-parameter regularization, AIP 2009 14/21

  15. Introduction TLS, RTLS and DRTLS Multi-parameter reg. Error bounds Computational aspects Conclusions Theorem 1 (Order optimality for the RTLS solution) A 1 , A 2    p � � ⇒ � x RTLS − x † � = O p ∈ [1 , 2 + a ] ( δ + h ) p + a  R = � Bx † �  Extensions: • More general link conditions • More general conditions for solution smoothness • Case 0 < p < 1 ? Problem: Exact magnitude of � Bx † � necessary! U. Tautenhahn, Multi-parameter regularization, AIP 2009 15/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend