subspace regularization for large linear discrete ill
play

Subspace Regularization for Large Linear Discrete Ill-Posed Problems - PowerPoint PPT Presentation

Fachbereich 03 Zentrum fr Technomathematik Mathematik/Informatik Subspace Regularization for Large Linear Discrete Ill-Posed Problems 8th GAMM Workshop Applied and Numerical Linear Algebra TU Hamburg-Harburg, September 11-12, 2008 Angelika


  1. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Subspace Regularization for Large Linear Discrete Ill-Posed Problems 8th GAMM Workshop Applied and Numerical Linear Algebra TU Hamburg-Harburg, September 11-12, 2008 Angelika Bunse-Gerstner Zentrum für Technomathematik, Fachbereich 3 - Mathematik und Informatik Universität Bremen and Valia Guerra Instituto de Cibernetica, Matematica y Fisica Havanna Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 1 / 17

  2. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Overview Linear Discrete Ill-Posed Problems 1 Preconditioning 2 3 Subspace Regularization Numerical Examples 4 Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 2 / 17

  3. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Linear Discrete Ill-Posed Problems ˆ x ex = arg min x � A ex x − b ex � 2 x = arg min x � Ax − b � 2 � A ex − A � 2 / � A ex � 2 , � b ex − b � 2 / � b ex � 2 with small Reconstruct x ex using the perturbed data A , b ! Problem: � x ex − ˆ x � 2 / � x ex � 2 can be huge ! Standard techniques to solve � Ax − b � 2 = min ! cannot be applied !! Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 3 / 17

  4. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Characteristics of Linear Discrete Ill-Posed Problems Typical properties of the problem � Ax − b ex � 2 = min ! (inherited from source problem): (Perturbations in A ex neglected,i.e. A = A ex ) ◮ A dense, often very large ◮ A = U Σ V T with σ i ” i →∞ ” 0 , rapidly decreasing, no distinct gap, − → Often but not always: u i , v i ’ smooth ’ for small i , more ’ oscillations ’ in u i , v i with decreasing σ i u T i b ex ◮ solution x ex = P n v i i = 1 σ i ◮ Discrete Picard Condition: u T i b ex ” i →∞ ” 0 , − → σ i Therefore u T u T i b ex i b ex ❳ ❳ x ex = v i + v i σ i σ i σ i not small σ i small ⑤ ④③ ⑥ harmless ’ smooth ’, entries not large Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 4 / 17

  5. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Characteristics of Linear Discrete Ill-Posed Problems In practice: measurement errors. Instead of b ex we have b = b ex + η, and we can only solve � Ax − b � = min ! ◮ A dense, often very large ◮ A = U Σ V T with σ i ” i →∞ ” 0 , rapidly decreasing, no distinct gap, − → Often but not always: u i , v i ’ smooth ’ for small i , more ’ oscillations ’ in u i , v i with decreasing σ i u T i b ex ◮ solution x ex = P n v i i = 1 σ i ◮ Discrete Picard Condition: u T i b ex ” i →∞ ” 0 , − → σ i Therefore u T u T i b ex i b ex ❳ ❳ x ex = v i + v i σ i σ i σ i not small σ i small ⑤ ④③ ⑥ harmless ’ smooth ’, entries not large Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 4 / 17

  6. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Characteristics of Linear Discrete Ill-Posed Problems In practice: measurement errors. Instead of b ex we have b = b ex + η, and we can only solve � Ax − b � = min ! ◮ A dense, often very large ◮ A = U Σ V T with σ i ” i →∞ ” 0 , rapidly decreasing, no distinct gap, − → Often but not always: u i , v i ’ smooth ’ for small i , more ’ oscillations ’ in u i , v i with decreasing σ i u T u T u T i b i b ex i η ◮ solution x = P n σ i v i = P n v i + P n ˆ σ i v i i = 1 i = 1 i = 1 σ i ◮ Discrete Picard Condition: u T i b ex ” i →∞ ” 0 , − → σ i Therefore u T u T i b ex i b ex ❳ ❳ x ex = v i + v i σ i σ i σ i not small σ i small ⑤ ④③ ⑥ harmless ’ smooth ’, entries not large Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 4 / 17

  7. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Characteristics of Linear Discrete Ill-Posed Problems In practice: measurement errors. Instead of b ex we have b = b ex + η, and we can only solve � Ax − b � = min ! ◮ A dense, often very large ◮ A = U Σ V T with σ i ” i →∞ ” 0 , rapidly decreasing, no distinct gap, − → Often but not always: u i , v i ’ smooth ’ for small i , more ’ oscillations ’ in u i , v i with decreasing σ i u T u T u T i b i b ex i η ◮ solution x = P n σ i v i = P n v i + P n ˆ σ i v i i = 1 i = 1 i = 1 σ i ◮ No Picard Condition: u T i b growing with decreasing σ i σ i Therefore u T u T i b ex i b ex ❳ ❳ x ex = v i + v i σ i σ i σ i not small σ i small ⑤ ④③ ⑥ harmless ’ smooth ’, entries not large Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 4 / 17

  8. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Characteristics of Linear Discrete Ill-Posed Problems In practice: measurement errors. Instead of b ex we have b = b ex + η, and we can only solve � Ax − b � = min ! ◮ A dense, often very large ◮ A = U Σ V T with σ i ” i →∞ ” 0 , rapidly decreasing, no distinct gap, − → Often but not always: u i , v i ’ smooth ’ for small i , more ’ oscillations ’ in u i , v i with decreasing σ i u T u T u T i b i b ex ◮ solution x = P n σ i v i = P n v i + P n i η ˆ σ i v i i = 1 i = 1 i = 1 σ i ◮ No Picard Condition: u T i b growing with decreasing σ i σ i Therefore u T u T i b i b ❳ ❳ x = ˆ v i + v i σ i σ i σ i not small σ i small ⑤ ④③ ⑥ extremely harmful ’ highly oscillating ’, entries extremely large, dominated by perturbations Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 4 / 17

  9. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Regularization Regularization methods use knowledge about the exact solution to find a good approximation. Example: Tychonov regularization. Instead of � Ax − b � 2 = min ! solve � Ax − b � 2 2 + λ 2 � Lx � 2 2 = min ! , λ small equivalently ✔ b ✌ ✔ ✕ ✕✌ A ✌ ✌ = min! x − ✌ ✌ 0 λ L ✌ ✌ 2 e. g. L = I or L discretized differential operator Need a good choice for the regularization paramter λ (and for L ) Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 5 / 17

  10. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Numerical Methods for the Large Dimensional Case Iterative method needed ( A is dense!), e.g. CG or LSQR Advantage: Krylov methods have regularization properties (regularization parameter: iteration index) Problems: Good regularization parameter not really known Convergence maybe slow Additional regularization in general still needed. Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 6 / 17

  11. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Work Done in This Field ◮ Ake Björck, Lars Eldén, Per Christian Hansen, Tommy Elfving ◮ Martin Hanke, Robert Plemmons ◮ Misha E. Kilmer, Dianne P ., Oleary, James Nagy ◮ Daniela Calvetti, Lothar Reichel, Brian Lewis ◮ Gene H. Golub, Urs von Matt ◮ Jerry Eriksson, Marten Gullikson, Per-Åke Wedin ◮ Uri Asher, Eldad Haber, Douglas Oldenburg ◮ Marielba Rojas, Trond Steihaug ◮ Tony Chan, Stanley Osher, Curtis R. Vogel ◮ Matlab Software (Toolboxen): ◮ Restore Tools (Nagy, 2002) ◮ MOORe Tools (Jacobsen,2005) Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 7 / 17

  12. Fachbereich 03 Zentrum für Technomathematik Mathematik/Informatik Preconditioning Conventional preconditioning is not an option ! Only very few approaches exist for the general case. [e.g. Calvetti und Reichel 2002 ]: Smoothing of the solution Ideal: Process only the parts in the "right" (smooth) subspace V . Leave the remaining parts unchanged. ◮ Recall x k essentially determined by the dominant SVD-parts ◮ The leading singular vectors v 1 , v 2 , . . . are often "smooth", i.e. V "is smooth". ◮ for special structure (Toeplitz etc. image processing): Fourier basis vectors ◮ general A : use Fourier- or Wavelet basis vectors or approximations of the singular vectors [ [Hanke and Vogel 1999, Hansen and Jacobsen 2000, Hansen,Jacobsen and Saunders 2003 (Two Level Preconditioning PreLSQR) ] What about non-smooth solutions? Linear Discrete Ill-Posed Problems Preconditioning Subspace Regularization Numerical Examples A. Bunse-Gerstner 8 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend