the lavrentiev phenomena
play

The Lavrentiev phenomena by Alessandro Ferriero CMAP Ecole - PowerPoint PPT Presentation

The Lavrentiev phenomena by Alessandro Ferriero CMAP Ecole Polytechnique A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr p.1/10 Abstract 1. The Lavrentiev phenomenon 2. The Mani example 3. A class of


  1. The Lavrentiev phenomena by Alessandro Ferriero – CMAP Ecole Polytechnique – A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.1/10

  2. Abstract • 1. The Lavrentiev phenomenon • 2. The Manià example • 3. A class of Lagrangians without Lavrentiev phenomenon • 4. A multi-dimensional variational problem • 5. The case of higher-order Lagrangians • 6. " + ∞ -values" phenomenon A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.2/10

  3. The Lavrentiev phenomenon Let L : [ a, b ] × R N × R N → [ −∞ , + ∞ ] be the Lagrangian function associated to an action functional Z b L ( t, x ( t ) , x ′ ( t )) dt I ( x ) = a and consider the following sets of admissible trajectories: AC ∗ [ a, b ] = { x ∈ AC ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } , Lip ∗ [ a, b ] = { x ∈ Lip ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.3/10

  4. The Lavrentiev phenomenon Let L : [ a, b ] × R N × R N → [ −∞ , + ∞ ] be the Lagrangian function associated to an action functional Z b L ( t, x ( t ) , x ′ ( t )) dt I ( x ) = a and consider the following sets of admissible trajectories: AC ∗ [ a, b ] = { x ∈ AC ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } , Lip ∗ [ a, b ] = { x ∈ Lip ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } . The action I exhibits the Lavrentiev phenomenon (LP) whenever AC ∗ [ a,b ] I < inf Lip ∗ [ a,b ] I . inf A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.3/10

  5. The Lavrentiev phenomenon Let L : [ a, b ] × R N × R N → [ −∞ , + ∞ ] be the Lagrangian function associated to an action functional Z b L ( t, x ( t ) , x ′ ( t )) dt I ( x ) = a and consider the following sets of admissible trajectories: AC ∗ [ a, b ] = { x ∈ AC ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } , Lip ∗ [ a, b ] = { x ∈ Lip ([ a, b ]; R N ) : x ( a ) = A, x ( b ) = B } . The action I exhibits the Lavrentiev phenomenon (LP) whenever AC ∗ [ a,b ] I < inf Lip ∗ [ a,b ] I . inf • We cannot calculate a minimizer by using a standard finite-element method. • The set of trajectories is a fundamental part of the physical model. A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.3/10

  6. The Manià example • The action Z 1 x ′ 6 ( t )[ x 3 ( t ) − t ] 2 dt, I ( x ) = − 1 with boundary conditions x ( − 1) = − 1 , x (1) = 1 , exhibits (LP) , i.e. AC ∗ [0 , 1] I < inf Lip ∗ [0 , 1] I . inf √ 3 ( ¯ x ( t ) = t is a minimizer for I in AC ∗ [ − 1 , 1] .) A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.4/10

  7. The Manià example • The action Z 1 x ′ 6 ( t )[ x 3 ( t ) − t ] 2 dt, I ( x ) = − 1 with boundary conditions x ( − 1) = − 1 , x (1) = 1 , exhibits (LP) , i.e. AC ∗ [0 , 1] I < inf Lip ∗ [0 , 1] I . inf √ 3 ( ¯ x ( t ) = t is a minimizer for I in AC ∗ [ − 1 , 1] .) • (LP) persists under perturbations of the Lagrangians: Z 1 { x ′ 6 ( t )[ x 3 ( t ) − t ] 2 + ǫ | x ′ ( t ) | 5 / 4 } dt, x ( − 1) = − 1 , x (1) = 1 , − 1 exhibits (LP) for any "small" ǫ . • (LP) persists under perturbations of the boundary conditions: Z 1 x ′ 6 ( t )[ x 3 ( t ) − t ] 2 dt, x ( t − 1 ) = x − 1 , x ( t 1 ) = x 1 , − 1 where ( t − 1 , x − 1 ) ∈ B (( − 1 , − 1) , ǫ ) , ( t 1 , x 1 ) ∈ B ((1 , 1) , ǫ ) , exhibits (LP) for any "small" ǫ . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.4/10

  8. A class of Lagrangians without (LP) Theorem [A. Cellina, A. F., E.M. Marchini]. Let x : [ a, b ] → R N be a trajectory in AC [ a, b ] . Assume that: 1. L 1 ( x, ξ ) , · · · , L m ( x, ξ ) : Im [ x ] × R N → R are continuous and convex in ξ ; 2. ψ 1 , · · · , ψ m : [ a, b ] × Im [ x ] → [ c, + ∞ ) are continuous, with c > 0 ; Z b m X L i ( x ( t ) , x ′ ( t )) ψ i ( t, x ( t )) dt . 3. I ( x ) = a i =1 Then, given ǫ > 0 , there exists a Lipschitzian trajectory x ǫ , a reparameterization of x , such that x ( a ) = x ǫ ( a ) , x ( b ) = x ǫ ( b ) and I ( x ǫ ) ≤ I ( x ) + ǫ . � A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.5/10

  9. A class of Lagrangians without (LP) Theorem [A. Cellina, A. F., E.M. Marchini]. Let x : [ a, b ] → R N be a trajectory in AC [ a, b ] . Assume that: 1. L 1 ( x, ξ ) , · · · , L m ( x, ξ ) : Im [ x ] × R N → R are continuous and convex in ξ ; 2. ψ 1 , · · · , ψ m : [ a, b ] × Im [ x ] → [ c, + ∞ ) are continuous, with c > 0 ; Z b m X L i ( x ( t ) , x ′ ( t )) ψ i ( t, x ( t )) dt . 3. I ( x ) = a i =1 Then, given ǫ > 0 , there exists a Lipschitzian trajectory x ǫ , a reparameterization of x , such that x ( a ) = x ǫ ( a ) , x ( b ) = x ǫ ( b ) and I ( x ǫ ) ≤ I ( x ) + ǫ . � • The class of Lagrangians L ( t, x, x ′ ) = P m i =1 L i ( x, x ′ ) ψ i ( t, x ) does not exhibit (LP) for any boundary conditions; it includes the autonomous Lagrangians. R b • Condition 2. is used only to prove that a L i ( x ( t ) , x ′ ( t )) dt are finite. The Theorem can be proved under the more general condition: Z b L i ( x ( t ) , x ′ ( t )) dt < + ∞ , for any i . 2 ′ . ψ i ( t, x ) ≥ 0 and a • We cannot drop condition 2 ′ .: setting m = 1 , ψ 1 ( t, x ) = [ x 3 − t ] 2 and L 1 ( x, x ′ ) = x ′ 6 , we obtain the Lagrangian of Manià, ψ 1 ≥ 0 and R 1 R 1 0 1 / (3 6 t 4 ) dt = + ∞ . 0 L 1 (¯ x ( t ) , ¯ x ′ ( t )) dt = A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.5/10

  10. A multi-dimensional variational problem without (LP) Let L : R N × R N → R be a radial Lagrangian with respect to the gradient, i.e. there exists a function h : R N × [0 , ∞ ) → R such that L ( u, ξ ) = h ( u, | ξ | ) . Consider the action Z I ( u ) = L ( u ( x ) , ∇ u ( x )) dx S [ a,b ] where S [ a, b ] = { x ∈ R N : 0 < a ≤ | x | ≤ b } . We denote with Lip r ( S [ a, b ]) and W 1 , 1 ( S [ a, b ]) respectively the sets r { u ∈ Lip ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } , { u ∈ W 1 , 1 ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.6/10

  11. A multi-dimensional variational problem without (LP) Let L : R N × R N → R be a radial Lagrangian with respect to the gradient, i.e. there exists a function h : R N × [0 , ∞ ) → R such that L ( u, ξ ) = h ( u, | ξ | ) . Consider the action Z I ( u ) = L ( u ( x ) , ∇ u ( x )) dx S [ a,b ] where S [ a, b ] = { x ∈ R N : 0 < a ≤ | x | ≤ b } . We denote with Lip r ( S [ a, b ]) and W 1 , 1 ( S [ a, b ]) respectively the sets r { u ∈ Lip ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } , { u ∈ W 1 , 1 ( S [ a, b ]) : u radial , u | ∂B (0 ,a ) = A, u | ∂B (0 ,b ) = B } . • Let L be continuous and convex with respect to the gradient. Then, inf I = Lip r ( S [ a,b ]) I . inf W 1 , 1 ( S [ a,b ]) r A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.6/10

  12. (LP) for higher-order Lagrangians The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order ν + 1 , with ν ∈ N : Z b • minimize L ( t, x ( t ) , · · · , x ( ν +1) ( t )) dt I ( x ) = a on a set X of admissible trajectories x : [ a, b ] → R N satisfying the boundary conditions x ( a ) = A , x ( b ) = B , · · · , x ( ν ) ( a ) = A ( ν ) , x ( ν ) ( b ) = B ( ν ) . A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.7/10

  13. (LP) for higher-order Lagrangians The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order ν + 1 , with ν ∈ N : Z b • minimize L ( t, x ( t ) , · · · , x ( ν +1) ( t )) dt I ( x ) = a on a set X of admissible trajectories x : [ a, b ] → R N satisfying the boundary conditions x ( a ) = A , x ( b ) = B , · · · , x ( ν ) ( a ) = A ( ν ) , x ( ν ) ( b ) = B ( ν ) . I exhibits the Lavrentiev phenomenon (LP) whenever inf I < inf I . W ν +1 , 1 W ν +1 , ∞ ( a,b ) ( a,b ) ∗ ∗ A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.7/10

  14. (LP) for higher-order Lagrangians The Lavrentiev phenomenon occurs as well for problems of the Calculus of Variations of order ν + 1 , with ν ∈ N : Z b • minimize L ( t, x ( t ) , · · · , x ( ν +1) ( t )) dt I ( x ) = a on a set X of admissible trajectories x : [ a, b ] → R N satisfying the boundary conditions x ( a ) = A , x ( b ) = B , · · · , x ( ν ) ( a ) = A ( ν ) , x ( ν ) ( b ) = B ( ν ) . I exhibits the Lavrentiev phenomenon (LP) whenever inf I < inf I . W ν +1 , 1 W ν +1 , ∞ ( a,b ) ( a,b ) ∗ ∗ • Autonomous higher-order Lagrangians can present (LP) : Z 1 | x ′′ ( t ) | 7 [3 x ( t ) − 3 | x ′ ( t ) − 1 | 2 − 2 | x ′ ( t ) − 1 | 3 ] 2 dt, I ( x ) = 0 with boundary conditions x (0) = 0 , x (1) = 5 / 3 , x ′ (0) = 1 , x ′ (1) = 2 [A.V. Sarychev, 1997]. A. Ferriero, II MULTIMAT Meeting, ferriero@cmapx.polytechnique.fr – p.7/10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend