local convergence of the lavrentiev method for the cauchy
play

Local Convergence of the Lavrentiev Method for the Cauchy Problem - PowerPoint PPT Presentation

1 Local Convergence of the Lavrentiev Method for the Cauchy Problem via a Carleman Inequality DU Duc Thang (Vietnam National University, Hanoi) Faten JELASSI (LAMSIN, Ecole Nationale dIng enieurs de Tunis, Tunisie) In collaboration


  1. 1 Local Convergence of the Lavrentiev Method for the Cauchy Problem via a Carleman Inequality DU Duc Thang (Vietnam National University, Hanoi) Faten JELASSI (LAMSIN, ´ Ecole Nationale d’Ing´ enieurs de Tunis, Tunisie) In collaboration with: Faker BEN BELGACEM (Universit´ e de Technologie de Compi` egne, France) Partially granted by: - NAFOSTED, Vietnam (for DU Duc Thang) - MERST, Tunisie (the LR99ES-20 contract for Faten JELASSI)

  2. 2 The Data Completion problem Find u such that − div( a ∇ u ) + bu = f, in Ω, u = g, on Γ C , a∂ n u = ϕ, on Γ C , u = ? , on Γ I . The problem is ill-posed • Uniqueness : TRUE (= ⇒ ) Holmgren Theorem • Existence : Not guaranteed • Stability : Not valid (= ⇒ ) A big problem when computations are aimed

  3. 3 Many Motivations 1. Geophysics/seismic prospect 2. Identification of Cracks, Contact resistivity, Corrosion Factor, (. . . ) —many examples in Inverse Problems and Engineering— 3. Electrical activities in the brain cortex (EEG, MEG), and in the heart myocardial (ECG) 4. Computer Tomography; Electrical Impedance Tomography; ...

  4. 4 Different Approaches 1. Bi-Laplacian problem, Quasi-Reversibility : Klibanov, Santosa (1991), Cao, Pereverez (2007), Bourgeois, Dard´ e (2010) 2. Backus-Gilbert method, Moment problem : Cheng, Hon, Wei, Yamamoto (2001) 3. Optimal Control Problem : Fursikov (1987), Kabanikhin, Karchevski (1995), Chakib, Nachaoui (2006), Ben Abda, Henry, Jday (2009) 4. Variational Formulation via Holmgren Theorem : Ben Belgacem, El Fekih, Aza¨ ıez (2005), Andrieux, Baranger, Ben Abda (2006)

  5. 5 The Variational Formulation (1) Duplicate u into u D ( λ, g ) and u N ( λ, ϕ )   − div( a ∇ u D ) + bu D = f, in Ω − div( a ∇ u N ) + bu N = f, in Ω       and u D ( λ, g ) = g, on Γ C a∂ n u N ( λ, ϕ ) = ϕ, on Γ C     u D ( λ, g ) = λ, on Γ I u N ( λ, ϕ ) = λ, on Γ I   Cauchy problem (= ⇒ ) Steklov-Poincar´ e problem By Holmgren Theorem, the right λ ∈ H 1 / 2 (Γ I ) is such that a∂ n u D ( λ, g ) = a∂ n u N ( λ, ϕ ) , on Γ I Then (again by Holmgren) u D ( λ, g ) = u N ( λ, ϕ ) = u in Ω

  6. 6 The Variational Formulation (2) ∈ H 1 / 2 (Γ I ) � � Find λ such that � [( a ∇ u D ( λ ) ∇ u D ( µ ) + bu D ( λ ) u D ( µ )) − ( a ∇ u N ( λ ) ∇ u N ( µ ) + bu N ( λ ) u N ( µ ))] d x Ω � � = − a ∇ ˘ u D ( g ) ∇ u D ( µ ) + b ˘ u D ( g ) u D ( µ ) d x − ϕu N ( µ ) d x , ∀ µ Ω Γ C ( ⇐ ⇒ ) Find λ such that s ( λ, µ ) = ( s D ( λ, µ ) − s N ( λ, µ )) = ℓ ( µ ) ∀ µ Steklov-Poincar´ e operator: Find λ such that Sλ = ( S D − S N ) λ = ℓ or in the preconditioned form ( S D - preconditioner) Tλ = f

  7. 7 Lavrentiev’s Regularization - Global Convergence Find λ ̺ such that ̺s D ( λ ̺ , µ ) + s ( λ ̺ , µ ) = ℓ ( µ ) , ∀ µ. If λ is an exact solution. Then � ̺ ̺ → 0 � λ − λ ̺ � s D = 0 , lim and � λ − λ ̺ � s ≤ 2 � λ � s D ( g ǫ , ϕ ǫ ) = ( g, ϕ ) + (( δg ) , ( δϕ )), size (( δg ) , ( δϕ )) = ǫ Lavrentiev regularization problem for noisy data: Find λ ǫ such that ̺s D ( λ ǫ , µ ) + s ( λ ǫ , µ ) = ℓ ǫ ( µ )

  8. 8 Extended-Domain Lavrentiev Regularization Find λ ♭ ( ∈ H 1 / 2 (Γ ♭ I )) such that s ♭ ( λ ♭ , µ ) = ℓ ♭ ( µ ) , ∀ µ ∈ H 1 / 2 (Γ ♭ I ) Extended-Domain Lavrentiev Regularization: Find λ ♭ ǫ,̺ such that ̺s ♭ D ( λ ♭ ǫ,̺ , µ ) + s ♭ ( λ ♭ ǫ,̺ , µ ) = ℓ ♭ ǫ ( µ ) , ∀ µ Retrieve the solution on the real domain u ♭ N ( λ ♭ Ω ( ∈ H 1 (Ω)) , u ♭ N ( λ ♭ �� �� � � u ǫ,̺ = ǫ,̺ , ϕ ǫ ) λ ǫ,̺ = ǫ,̺ , ϕ ǫ ) � � Γ I

  9. 9 Discrepancy Principle of Morozov The Kohn-Vogelius functional on Ω ♭ � ǫ ( λ ♭ ) = | u ♭ D ( λ ♭ , g ǫ ) − u ♭ N ( λ ♭ , ϕ ǫ ) | H 1 (Ω ♭ ) ≈ ǫ 2 KV ♭ We have that � � 2 KV ǫ ( λ ♭ ) = | u ♭ D ( λ ♭ , g ǫ ) − u ♭ N ( λ ♭ , ϕ ǫ ) | H 1 (Ω) ≈ ǫ 2 KV ♭ ǫ ( λ ♭ ) ≈ The Discrepancy Principle of Morozov: Fix σ > 1 . Find ̺ = ̺ ( ǫ ) verifying � 2 KV ǫ ( λ ♭ ǫ,̺ ) = σǫ

  10. 10 Variance? Bias? Thm. 1 (Variance) . There holds that ( ǫ = noise size) 1 � λ ǫ,̺ − λ ̺ � H 1 / 2 (Γ I ) ≤ Cǫ̺ − 2(1+2 β ) . Thm. 2 (Bias) . If Cauchy data are exact (noise free) then ̺ → 0 � λ ̺ − λ � H 1 / 2 (Γ I ) = 0 . lim Rem. 1 . Lavrentiev regularization method converges if ǫ → 0 ǫ̺ − 1 / 2 = 0 . lim The Extended-Domain Lavrentiev method is more resistant to noise. Rem. 2 . The deduced analytical results are only for particular geometry domains (circles, annulus, rectangles, etc).

  11. 11 Harmonical Extension and the General Source Condition General Source Condition (GSC) for the problem ( Tλ = f ) λ ∈ R ( T p ) λ = T p χ ⇐ ⇒ This condition is widely used in the Analysis of Regularization Methods. Controversial! Rejected by some mathematicians (M. Klibanov, ...). A concrete meaning of it, in the Cauchy problem, is provided in Thm. 3. Recall that λ = u | Γ I where u is the solution of the Cauchy problem. Then ⇒ ∃ u ♭ ∈ H 1 (Ω ♭ ) , harmonic : u = ( u ♭ ) | Ω λ ∈ R ( T p ) ⇐

  12. 12 Convergence Results Thm. 4 ( A-priori convergence) . 2(1+2 β ) Assume that λ satisfies (GSC). The choice ̺ = ǫ yields that 1+2 p 2 p � λ ǫ,̺ − λ � H 1 / 2 (Γ I ) ≤ Cǫ 2 p +1 Thm. 5 ( A-posteriori convergence) . Assume that λ satisfies (GSC). The choice of ̺ = ̺ ( ǫ ) from (DP) of Morozov provides 2 p � λ ǫ,̺ − λ � H 1 / 2 (Γ I ) ≤ Cǫ 2 p +1

  13. 13 A Carleman’s Inequality Γ C Given θ ∈ C 2 (¯ Ω) satisfies Γ I ��������������� ��������������� ��������������� ��������������� ��������������� ��������������� Ω |∇ θ ( x ) | > 0 , ∀ x ∈ ¯ τ Ω, ��������������� ��������������� ��������������� ��������������� ��������������� ��������������� θ ( x ) > 0 , ∀ x ∈ ¯ Ω \ Γ I , θ ( x ) = 0 , x ∈ Γ I . ��������������� ��������������� ��������������� ��������������� ��������������� ��������������� Provided a weight function ��������������� ��������������� ψ ( x ) = e θ ( x ) , x ∈ ¯ Ω. Carleman’s Estimate with boundary condition: Ω τ = { x ∈ Ω , ψ ( x ) ≥ 1 + τ } � 1 � � [ a ( ∇ v ) 2 + ζ 2 bv 2 ] e 2 ζψ d x ≤ C [ − div( a ∇ v ) + bv ] 2 e 2 ζψ d x ζ Ω Ω � � [( a∂ n v ) 2 + ζ 2 v 2 ] e 2 ζψ dγ + Γ for all v ∈ H 2 (Ω).

  14. 14 Local Bias Estimate? Thm. 6. β > 0 a small parameter. ∃ q = q ( τ ) ∈ [0 , 1 / 2[ and C = C ( τ ) such that � u N ( λ ̺ , ϕ ) − u N � H 1 (Ω τ ) ≤ C̺ q � λ � . Proof (Sketch.) We set w ̺ = u N ( λ ̺ , ϕ ) − u , consider two small parameters ( τ, η ) such that β > τ > η > 0. A cut-off function ξ = ξ τ,η is such that  0 ≤ ξ τ,η ( x ) ≤ 1 ∀ x ∈ Ω    ξ τ,η ( x ) = 1 ∀ x ∈ Ω τ   ξ τ,η ( x ) = 0 ∀ x ∈ Ω \ Ω η . 

  15. 15 Proof (cont.) The Carleman Inequality is applied to v := w ̺ ξ as follows � 1 � � a ( ∇ ( w ̺ ξ )) 2 + ζ 2 b ( w ̺ ξ ) 2 � e 2 ζψ d x ≤ C � 2 e 2 ζψ d x � � − div( a ∇ ( w ̺ ξ )) + bw ̺ ξ ζ Ω β Ω � ( a∂ n w ̺ ξ ) 2 + ζ 2 ( w ̺ ξ ) 2 � e 2 ζψ dγ � � + . Γ which yields, after some calculations and simplifications � e 2 ζ ( τ − β ) � � � a ( ∇ ( w ̺ )) 2 + ζ 2 b ( w ̺ ) 2 � [ a ( ∇ w ̺ ) 2 + bw 2 � ̺ ] d x + ζ 2 e 2 ζ ( σ − β ) w 2 � d x ≤ C ̺ dγ . ζ Ω β Ω η \ Ω τ Γ C where σ = max { ψ ( x ) − 1 , x ∈ Γ C } .

  16. 16 Proof (cont.) An important inequality � w N,̺ � H 1 / 2 (Γ C ) + � a∂ n w D,̺ � H − 1 / 2 (Γ C ) ≤ C √ ̺ � λ � s D leads to � ρ 2 � λ ̺ − λ � s D + ̺ � � w ̺ � H 1 (Ω β ) ≤ C ρ 2 s � λ � s D √ ̺ e − ζ ( β − τ ) tends to zero as ζ large. This yields where s = σ − β 1 β − τ and ρ = 1 2(1+ s ) � λ � s D � w ̺ � H 1 (Ω β ) ≤ C̺ 1 The proof is complete with q = 2(1+ s ) .

  17. 17 Some remarks • No use of the General Source Condition on the restricted area Ω β . • Super-convergence result of the bias. Under a smoothness of λ , we may have, � λ ̺ − λ � s D ≤ C̺ p for some p ∈ [0 , 1 / 2[, and an interpolation inequality 1 � w ̺ � H 1 (Ω β ) ≤ C̺ (1 − µ ) p + q = C̺ (1 − µ ) p + µ/ 2 , µ = 1 + s. • β → 0 ⇒ µ → 0 • β grows then Ω β reduces to a thin band concentrated around Γ C ⇒ µ → 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend