on quaternion cauchy szeg kernel and related boundary
play

On quaternion Cauchy-Szeg kernel and related boundary value problem - PowerPoint PPT Presentation

On quaternion Cauchy-Szeg kernel and related boundary value problem Irina Markina, Der Chen Chang, Wei Wang University of Bergen, Norway Georgetown University, Washington D.C, USA Zhejiang University, PR China On quaternion Cauchy-Szeg o


  1. On quaternion Cauchy-Szegö kernel and related boundary value problem Irina Markina, Der Chen Chang, Wei Wang University of Bergen, Norway Georgetown University, Washington D.C, USA Zhejiang University, PR China On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 1/39

  2. Upper half plain and Cauchy kernel y = Im z U = R × R + ⊂ C x = Re z Any holomorphic function in U , continuous up to the boundary bU , is defined by the values at the boundary b U . � + ∞ f b ( t ) 1 f ( z ) = t − zdt. 2 πi −∞ On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 2/39

  3. Siegel u.h.sp and Cauchy-Szegö kernel Im z 1 U ⊂ C 2 i R 3 ∼ = Re z 1 × C U = { ( z 1 , z 2 ) ∈ C 2 | Im z 1 > | z 2 | 2 } � | F ( z + iǫ ) | 2 dµ ( z ) F ∈ H 2 ( U ) : holomorphic, � F 2 � H 2 = sup ε> 0 b U ε → 0 F ( z + iǫ ) = F b exists in L 2 ( b U ) for z ∈ b U ; • lim • Set B ( b U ) of limits F b ’s is a closed subset of L 2 ( b U ) ; • � F 2 � H 2 ( U ) = � F b � L 2 ( b U ) . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 3/39

  4. Siegel u.h.sp and Cauchy-Szegö kernel U = { ( z 1 , z 2 ) ∈ C 2 | Im z 1 > | z 2 | 2 } � | F ( z + iǫ ) | 2 dµ ( z ) F ∈ H 2 ( U ) : holomorphic, � F 2 � H 2 = sup ε> 0 b U Function F from the Hardy space H 2 ( U ) is completely defined by its boundary values F b . � F b ( w ) S ( z, w ) dw, F ( z ) = z ∈ U b U • z �→ S ( z, w ) is holomorphic in U for all w ∈ U • S ( z, w ) = S ( w, z ) � � − 2 1 i • S ( z, w ) = 2 ( ¯ w 2 − z 2 ) − z 1 ¯ w 1 4 π 2 On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 4/39

  5. Projection operator The projection operator C : L 2 ( b U ) → B ( b U ) assoiates L 2 ( b U ) ∋ f �→ Cf = F b for some F ∈ H 2 ( U ) by making use of the Cauchy-Szegö kernel we obtain � Cf ( z ) = lim S ( z + εi, w ) f ( w ) dβ ( w ) ε → 0 b U by limit in L 2 ( b U ) for any z ∈ b U . S TEIN , E. M. , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals ,1993. Goal: to construct analogues of S ( z, w ) for the quaternion Siegel u.h.sp U On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 5/39

  6. Space of quatenions Q q = ( x 1 + i x 2 + j x 3 + k x 4 ) = ( x 1 , − → u ) ∈ R 4 σ = ( y 1 + i y 2 + j y 3 + k y 4 ) = ( y 1 , − → v ) ∈ R 4 q + σ = ( x 1 + y 1 , − → u + − → v ) , qσ = ( x 1 y 1 − − → u · − → v , x 1 − → v + y 1 − → u + − → u × − → v ) q = ( x 1 , −− → | q | 2 = q ¯ ¯ u ) , q, qσ = ¯ σ ¯ q q ¯ q − 1 = | q | 2 Space Q is a normed division algebra On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 6/39

  7. Right quaternion space Let V be a right vector space over Q V × Q → V, where ( v, σ ) �→ vσ. Let � v 1 , v 2 � be an Hermitian product on V σ ∈ Q � v 1 σ, v 2 � = ¯ σ � v 1 , v 2 � , � v 1 , v 2 σ � = � v 1 , v 2 � σ, ( V, � v � ) is a Hilbert space w.r.t. � v � = � v, v � 1 / 2 for any L ( v ) = � v L , v � , v ∈ V bounded right linear functional: L ( vσ ) = L ( v ) σ On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 7/39

  8. Siegel upper half space in Q n n � V = Q n = ( q 1 , . . . , q n ) = q, Let � p, q � = p l q l ¯ l =1 U = { ( q 1 , q 2 , . . . , q n ) = ( q 1 , q ′ ) ∈ Q n | Re q 1 > | q ′ | 2 } The space U is invariant under transformations. • Translation: → � q 1 + p 1 + 2 � p ′ , q ′ � , q ′ + p ′ � τ p : ( q 1 , q ′ ) �− , for p = ( p 1 , p ′ ) ∈ b U . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 8/39

  9. Siegel upper half space in Q n U = { ( q 1 , q ′ ) ∈ Q n | Re q 1 > | q ′ | 2 } • Rotations: R a : ( q 1 , q ′ ) �− → ( q 1 , a q ′ ) for a ∈ Sp( n − 1) R σ : ( q 1 , q ′ ) �− → ( σq 1 σ, q ′ σ ) for σ ∈ Q , | σ | = 1 • Dilations: δ r : ( q 1 , q ′ ) �− → ( r 2 q 1 , rq ′ ) , r > 0 . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 9/39

  10. Holomorphic functions in C f : Ω ⊂ C → C , f = u + iv , z = x + iy is holomorphic if f ( z 0 + h ) − f ( z 0 ) f ′ ( z 0 ) = lim or h h → 0 ¯ or ∂ z f = 0 ← → ∂ x u = ∂ y v, ∂ y u = − ∂ x v ∞ � a n ( z − z 0 ) n f ( z ) = n =0 On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 10/39

  11. Regular functions in Q Let f : Ω ⊂ Q → Q , if we require that h → 0 h − 1 � f ( q 0 + h ) − f ( q 0 ) � lim exists for all q ∈ Q then f ( q ) = aq + b is an affine function On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 11/39

  12. Regular functions in Q Let f : Ω ⊂ Q → Q , if we require that ∞ � P n ( q − q 0 ) n f ( q ) = n =0 exists for all q 0 ∈ Q with some polynomials P n then it equivalent to requirement that f ( q ) is analytic with respect of 4 real variables, defined by q . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 12/39

  13. Regular functions in Q Let f : Ω ⊂ Q → Q . A C 1 (Ω) function f = f 1 + i f 2 + j f 3 + k f 4 is (left) regular if it satisfies Cauchy-Riemann-Fueter equations ¯ for all ∂ q f ( q ) = 0 , q ∈ Ω , where q = x 0 + i x 1 + j x 2 + k x 3 = z 0 + z 1 j, ∂ q = ∂ x 0 + i ∂ x 1 + j ∂ x 2 + k ∂ x 3 = ¯ ¯ ∂ z 0 + ¯ ∂ z 1 j On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 13/39

  14. Regular functions in U The space of regular functions on U is invariant under mentioned above transformations of U . Namely, if f is regular on U , then f ( τ p ( · )) , p ∈ b U ; σf ( R σ ( · )) , σ ∈ Q , | σ | = 1 , f ( R a ( · )) , a ∈ Sp( n − 1); and f ( δ r ( · )) are all regular on U . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 14/39

  15. Hardy space H 2 ( U ) Re q 1 U ⊂ Q n b U + ε e e Q n − 1 × Im Q 1 � L 2 ( B U ) , � f, g � L 2 = f ( q ) g ( q ) dβ ( q ) . b U Hardy space H 2 ( U ) is all regular functions in U � | F ( q + ε e ) | 2 dβ ( q ) < ∞ � F � 2 H 2 ( U ) = sup ε> 0 b U It is right quaternion Hilbert space, invariant under the above mentioned transformations On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 15/39

  16. Boundary values THEOREM 1. Suppose that F ∈ H ( b U ) . Then • There exists lim ε → 0 F ( q + ε e ) = F b ( q ) in L 2 ( b U ) • � F b � L 2 ( b U ) = � F � H 2 ( U ) , • The space B ( b U ) of all boundary values is a closed subspace of L 2 ( b U ) . • C ( f )( q ) = � QH S ( h − 1 ∗ q ) f ( h ) d ( h ) , q, h ∈ QH where we used the identification b U ∼ = QH . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 16/39

  17. Siegel upper half plain in C x = Re z U = R 2 + ⊂ C y = Im z = b U ( R , +) : U → U ( a, b ) �→ ( a, b + r ) Identification ( R , +) ∼ = Im z = ( b U ) by the action at (0 , 0) : ( R , +) ∋ r �→ r ∈ b U On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 17/39

  18. Siegel upper half space in C 2 Re z 1 U ⊂ C 2 R 3 ∼ = Im z 1 × C U = { ( z 1 , z 2 ) ∈ C 2 | Re z 1 > | z 2 | 2 } H 1 = { ( t, ω ) ∈ R × C with ∗} ( H 1 , ∗ ) : U → U ( z 1 + | ω | 2 + it + 2 � ω, z 2 � , z 2 + ω ) ( z 1 , z 2 ) �→ Identification ( H 1 , ∗ ) ∼ = ( b U ) : H 1 ∋ ( t, ω ) �→ ( | ω | 2 + it, ω ) ∈ b U On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 18/39

  19. Quaternion Heisenberg group QH = ( R 3 × R 4 ∼ = Im Q × Q , ∗ ) ( x, v ) ∗ ( y, w ) = ( x + y + 2 Im � v, w � , v + w ) ( x,v ) b U ∋ ( q 1 , q ′ ) �→ ( q 1 + | v | 2 + ix 1 + jx 2 + kx 3 + 2 � v, q ′ � , q ′ + v ) ∈ b U = R 3 × R 4 b U ∼ = QH ∼ via action on (0 , 0) ∈ b U On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 19/39

  20. The Cauchy-Szegö kernel S ( q, p ): U × U → Q is unique function satisfying 1. S ( · , p ) ∈ H 2 ( U ) for each p ∈ U . S b ( q, p ) is defined for each p ∈ U and for a.a. q ∈ b U . 2. The kernel S is symmetric: S ( q, p ) = S ( p, q ) . S b ( q, p ) is defined for each q ∈ U and a.a. p ∈ b U . 3. The kernel S satisfies the reproducing property for F ∈ H 2 ( U ) � S b ( q, Q ) F b ( Q ) dβ ( Q ) , F ( q ) = q ∈ U b U On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 20/39

  21. Symmetries of the kernel S ( τ Q ( q ) , τ Q ( p )) = S ( q, p ) , S ( R a ( q ) , R a ( p )) = S ( q, p ) , σS ( R σ ( q ) , R σ ( p )) σ = S ( q, p ) , S ( δ r ( q ) , δ r ( p )) r 4 n +6 = S ( q, p ) . for q, p ∈ U , Q ∈ b U , a ∈ Sp( n − 1) , σ ∈ Q , | σ | = 1 , and r > 0 . On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 21/39

  22. Main theorem The Cauchy-Szegö kernel is given by � � n � p ′ k q ′ S ( q, p ) = s q 1 + p 1 − 2 ¯ , p, q ∈ U k k =2 where ∂ 2 n φ s ( φ ) = c n | φ | 4 , φ = x 1 + x 2 i + x 3 j + x 4 k ∈ Q . ∂x 2 n 1 On quaternion Cauchy-Szeg¨ o kernel and related boundary value problem – p. 22/39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend