avram parter and szeg o limit theorems from weak
play

AvramParter and Szeg o limit theorems: from weak convergence to - PowerPoint PPT Presentation

AvramParter and Szeg o limit theorems: from weak convergence to uniform approximation Egor A. Maximenko based on joint works with Johan Manuel Bogoya, Albrecht B ottcher, and Sergei M. Grudsky Instituto Polit ecnico Nacional, ESFM,


  1. Avram–Parter and Szeg˝ o limit theorems: from weak convergence to uniform approximation Egor A. Maximenko based on joint works with Johan Manuel Bogoya, Albrecht B¨ ottcher, and Sergei M. Grudsky Instituto Polit´ ecnico Nacional, ESFM, M´ exico International Workshop on Operator Theory and its Applications Chemnitz, TU August, 2017 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 1 / 30

  2. Szeg˝ o’s first limit theorem and other theorems about asymptotic distribution can be turned inside out. Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 2 / 30

  3. Szeg˝ o’s first Quantile limit theorem function Uniform convergence Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 3 / 30

  4. Szeg˝ o’s first Quantile limit theorem function Uniform convergence Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 4 / 30

  5. Toeplitz matrices a 0 a − 1 a − 2 a − 3 a − 4 a 1 a 0 a − 1 a − 2 a − 3 T 5 ( a ) = a 2 a 1 a 0 a − 1 a − 2 . a 3 a 2 a 1 a 0 a − 1 a 4 a 3 a 2 a 1 a 0 It is convenient to think that a k are the Fourier coefficients of a certain function a defined on [0 , 2 π ]: � 2 π a k = 1 a ( θ ) e − ki θ d θ. 2 π 0 The function a is called the generating symbol of the matrices � n T n ( a ) = � a j − k j , k =1 . Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 5 / 30

  6. Hermitian Toeplitz matrices, real bounded symbols We suppose that the generating symbol is bounded and real: a ∈ L ∞ ([0 , 2 π ] , R ) . The corresponding Toeplitz matrices are Hermitian: a − k = a k , a 0 ∈ R .   a 0 a 1 a 2 a 3 a 4 a 1 a 0 a 1 a 2 a 3     T 5 ( a ) = . a 2 a 1 a 0 a 1 a 2      a 3 a 2 a 1 a 0 a 1    a 4 a 3 a 2 a 1 a 0 The spectra of T n ( a ) “asymptotically fill” [ ess inf ( a ) , ess sup ( a )]: ess inf ( a ) ≤ λ ( n ) ≤ . . . ≤ λ ( n ) ≤ ess sup ( a ) , 1 n sp( T n ( a )) → [ ess inf ( a ) , ess sup ( a )] (in Hausdorff distance) . Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 6 / 30

  7. Behavior of the eigenvalues of Hermitian Toeplitz matrices Graph of a Eigenvalues of T 8 ( a ) 1 1 0 0 π 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 7 / 30

  8. Behavior of the eigenvalues of Hermitian Toeplitz matrices Graph of a Eigenvalues of T 16 ( a ) 1 1 0 0 π 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 7 / 30

  9. Behavior of the eigenvalues of Hermitian Toeplitz matrices Graph of a Eigenvalues of T 32 ( a ) 1 1 0 0 π 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 7 / 30

  10. Behavior of the eigenvalues of Hermitian Toeplitz matrices Graph of a Eigenvalues of T 32 ( a ) 1 1 β =0 . 4 how many? α =0 . 1 0 0 π 2 π First question: How many eigenvalues are in [ α, β ] ? Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 7 / 30

  11. Behavior of the eigenvalues of Hermitian Toeplitz matrices Graph of a Eigenvalues of T 32 ( a ) 1 1 λ (32) ≈ ? 20 0 0 π 2 π First question: How many eigenvalues are in [ α, β ] ? λ ( n ) Second question: ≈ ? j Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 7 / 30

  12. Szeg˝ o’s first limit theorem (1920) generating symbol test function a ∈ L ∞ ([0 , 2 π ] , R ) ϕ ∈ C ( R ) � 2 π n 1 1 ϕ ( λ ( n ) � ) − − − → ϕ ( a ( θ )) d θ j n 2 π 0 j =1 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 8 / 30

  13. Another form of the Szeg˝ o’s first limit theorem generating symbol α < β a ∈ L ∞ ([0 , 2 π ] , R ) a ( θ ) � = α, β a.e. # { j : α ≤ λ ( n ) µ R ( a − 1 ([ α, β ])) ≤ β } j − − − → n 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 9 / 30

  14. Another form of the Szeg˝ o’s first limit theorem distribution of the eigenvalues of Hermitian Toeplitz matrices generating symbol v ∈ R a ∈ L ∞ ([0 , 2 π ] , R ) a ( θ ) � = v a.e. # { j : λ ( n ) ≤ v } µ R ( { θ ∈ [0 , 2 π ]: a ( θ ) ≤ v } ) j − − − → n 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 10 / 30

  15. Example to illustrate Szeg˝ o’s first limit theorem Graph of a Eigenvalues of T 32 ( a ) 1 1 0 . 4 0 0 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 11 / 30

  16. Example to illustrate Szeg˝ o’s first limit theorem Graph of a Eigenvalues of T 32 ( a ) 1 1 0 . 4 15 eigenvalues 0 0 2 π 15 32 ≈ 0 . 469 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 11 / 30

  17. Example to illustrate Szeg˝ o’s first limit theorem Graph of a Eigenvalues of T 32 ( a ) 1 1 0 . 4 15 eigenvalues 0 0 2 π 15 32 ≈ 0 . 469 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 11 / 30

  18. Example to illustrate Szeg˝ o’s first limit theorem Graph of a Eigenvalues of T 32 ( a ) 1 1 0 . 4 15 eigenvalues 0 0 2 π 15 32 ≈ 0 . 469 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 11 / 30

  19. Example to illustrate Szeg˝ o’s first limit theorem Graph of a Eigenvalues of T 32 ( a ) 1 1 0 . 4 15 eigenvalues 0 0 2 π µ R { θ : a ( θ ) ≤ 0 . 4 } 15 = 0 . 483 32 ≈ 0 . 469 2 π Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 11 / 30

  20. Szeg˝ o found an approximate answer to the first question: how many eigenvalues belong to a given interval? The second question was still open: λ ( n ) ≈ ? j Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 12 / 30

  21. Szeg˝ o’s first Quantile limit theorem function Uniform convergence Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 13 / 30

  22. Definition of the quantile function BPM ( R ) := Borel probability measures over R . Given µ ∈ BPM ( R ), one defines: the cumulative distribution function F µ : R → [0 , 1], F µ ( v ) := µ ( −∞ , v ] , Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 14 / 30

  23. Definition of the quantile function BPM ( R ) := Borel probability measures over R . Given µ ∈ BPM ( R ), one defines: the cumulative distribution function F µ : R → [0 , 1], F µ ( v ) := µ ( −∞ , v ] , the quantile function Q µ : (0 , 1) → R , Q µ ( p ) := inf { v ∈ R : F µ ( v ) ≥ p } , Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 14 / 30

  24. Definition of the quantile function BPM ( R ) := Borel probability measures over R . Given µ ∈ BPM ( R ), one defines: the cumulative distribution function F µ : R → [0 , 1], F µ ( v ) := µ ( −∞ , v ] , the quantile function Q µ : (0 , 1) → R , Q µ ( p ) := inf { v ∈ R : F µ ( v ) ≥ p } , and the support of µ : supp( µ ) := { v ∈ R : ∀ ε > 0 µ ( v − ε, v + ε ) > 0 } . Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 14 / 30

  25. Quantile function associated to a list of real numbers X = ( − 1 , 0 . 6 , 1 . 1) . Associate the weight 1 / 3 to each one of the elements of X : µ ( {− 1 } ) = µ ( { 0 . 6 } ) = µ ( { 1 . 1 } ) = 1 3 . The corresponding cdf and the quantile function: 1 . 1 1 0 . 6 2 / 3 1 / 3 0 1 2 1 3 3 − 1 0 0 . 6 1 . 1 − 1 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 15 / 30

  26. Quantile function associated to a list of real numbers 118 100 195 166 164 123 102 172 164 117 The same numbers in the ascending order ( α 1 ≤ α 2 ≤ . . . ≤ α 10 ): 100 102 117 118 123 164 164 166 172 195 Q α (1 / 3) = α ⌈ 10 / 3 ⌉ = α 4 = 118. Q α ( p ) = α ⌈ np ⌉ . Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 16 / 30

  27. Quantile function associated to a function Let a ∈ L ∞ ([0 , 2 π ] , R ). Pushforward measure µ ∈ BPM ( R ): µ ( B ) := 1 2 πµ R ( a − 1 ( B )) . F a := the cumulative distribution function of a : F a ( v ) := 1 2 π µ R { θ ∈ [0 , 2 π ]: a ( θ ) ≤ v } , v ∈ R . Q a := the corresponding quantile function : Q a ( p ) := inf { v ∈ R : F a ( v ) ≥ p } , p ∈ (0 , 1) . Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 17 / 30

  28. Construction of the quantile function associated to a piecewise-linear real function Graph of a 1 3 4 1 4 0 π π 3 π 2 π 2 2 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 18 / 30

  29. Construction of the quantile function associated to a piecewise-linear real function Graph of a 1 3 4 1 4 0 π π 3 π 2 π 2 2 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 18 / 30

  30. Construction of the quantile function associated to a piecewise-linear real function Graph of a 1 1 3 3 4 4 1 1 4 4 0 π π 3 π 2 π 0 19 11 1 2 48 16 2 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 18 / 30

  31. Construction of the quantile function associated to a piecewise-linear real function Graph of a Graph of Q a 1 1 1 3 3 3 4 4 4 1 1 1 4 4 4 0 π π 3 π 2 π 0 19 11 1 19 11 1 0 2 48 16 2 48 16 Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 18 / 30

  32. Construction of the quantile function associated to a piecewise-linear real function Graph of a Graph of Q a 1 1 v v 0 2 π 1 0 a and Q a are identically distributed: 1 2 π µ R { θ ∈ [0 , 2 π ]: a ( θ ) ≤ v } = µ R { p ∈ [0 , 1]: Q a ( p ) ≤ v } Egor Maximenko (IPN, Mexico) weak �→ uniform IWOTA 2017 18 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend