draft
play

Draft EE 8235: Lecture 15 1 Lecture 15: Systems with inputs Input - PowerPoint PPT Presentation

Draft EE 8235: Lecture 15 1 Lecture 15: Systems with inputs Input types Additive inputs Boundary inputs Input-output mappings Transfer function Frequency response Impulse response Abstract evolution equation for


  1. Draft EE 8235: Lecture 15 1 Lecture 15: Systems with inputs • Input types ⋆ Additive inputs ⋆ Boundary inputs • Input-output mappings ⋆ Transfer function ⋆ Frequency response ⋆ Impulse response • Abstract evolution equation for boundary control systems ⋆ Objective: bring system into a form that resembles standard formulation • Two point boundary value problems

  2. Draft EE 8235: Lecture 15 2 Additive inputs • Example: diffusion equation on L 2 [ − 1 , 1] with Dirichlet BCs φ t ( x, t ) = φ xx ( x, t ) + u ( x, t ) φ ( x, 0) = φ 0 ( x ) φ ( ± 1 , t ) = 0 • Abstract evolution equation ψ t ( t ) = A ψ ( t ) + u ( t ) d 2 D ( A ) = { f ∈ L 2 [ − 1 , 1] , f ′′ ∈ L 2 [ − 1 , 1] , f ( ± 1) = 0 } A = d x 2 , • Solution � t ψ ( t ) = T ( t ) ψ (0) + T ( t − τ ) u ( τ ) d τ 0 T ( t ) : C 0 -semigroup generated by A

  3. Draft EE 8235: Lecture 15 3 Input-output maps ψ t ( t ) = A ψ ( t ) + B u ( t ) φ ( t ) = C ψ ( t )  A : H ⊃ D ( A ) − → H   • Underlying operators: B : U − → H  C : H − → Y  • Input-output mapping � t φ ( t ) = [ H u ] ( t ) = C T ( t − τ ) B u ( τ ) d τ 0 ⋆ Impulse response H ( t ) = ( C T ( t ) B ) 1 ( t ) ⋆ Transfer function H ( s ) = C ( sI − A ) − 1 B ⋆ Frequency response H (j ω ) = C (j ωI − A ) − 1 B

  4. Draft EE 8235: Lecture 15 4 An example � � φ t ( x, t ) = φ xx ( x, t ) + u ( x, t ) φ ′′ ( x, s ) = s φ ( x, s ) − u ( x, s ) Laplace − − − − − − − − → φ ( ± 1 , t ) = 0 φ ( ± 1 , s ) = 0 transform • Spatial realization of H ( s ) (with ψ 1 = φ , ψ 2 = φ ′ ) � ψ ′ � 0 � � ψ 1 ( x, s ) 1 ( x, s ) � 1 � � 0 � = + u ( x, s ) ψ ′ 2 ( x, s ) s 0 ψ 2 ( x, s ) − 1 0 � � ψ 1 ( x, s ) � 1 � φ ( x, s ) = ψ 2 ( x, s ) � � ψ 1 ( − 1 , s ) � � ψ 1 (1 , s ) � � � � 1 0 0 0 0 = + 0 0 1 0 ψ 2 ( − 1 , s ) ψ 2 (1 , s ) • Two point boundary value problem ψ ′ ( x ) = A ( x ) ψ ( x ) + B ( x ) u ( x ) φ ( x ) = C ( x ) ψ ( x ) 0 = N a ψ ( a ) + N b ψ ( b )

  5. Draft EE 8235: Lecture 15 5 Boundary control • Example: diffusion equation on L 2 [ − 1 , 1]   φ t ( x, t ) = φ xx ( x, t ) + d ( x, t ) φ ′′ ( x, s ) = s φ ( x, s ) − d ( x, s )   Laplace   φ ( − 1 , t ) = u ( t ) − − − − − − − − → φ ( − 1 , s ) = u ( s ) transform   φ (+1 , t ) = 0 φ (+1 , s ) = 0   • Spatial realization of H ( s ) (with ψ 1 = φ , ψ 2 = φ ′ ) � ψ ′ � 0 � � ψ 1 ( x, s ) � � � � 1 ( x, s ) 1 0 = + d ( x, s ) ψ ′ 2 ( x, s ) s 0 ψ 2 ( x, s ) − 1 0 � � ψ 1 ( x, s ) � 1 � φ ( x, s ) = ψ 2 ( x, s ) � � ψ 1 ( − 1 , s ) � � ψ 1 (1 , s ) � � � � � � u ( s ) 1 0 0 0 = + 0 0 0 1 0 ψ 2 ( − 1 , s ) ψ 2 (1 , s ) • Two point boundary value problem ψ ′ ( x ) = A ( x ) ψ ( x ) + B ( x ) d ( x ) φ ( x ) = C ( x ) ψ ( x ) ν = N a ψ ( a ) + N b ψ ( b )

  6. Draft EE 8235: Lecture 15 6 Abstract evolution equation for systems with boundary inputs φ t ( x, t ) = φ xx ( x, t ) + d ( x, t ) φ ( − 1 , t ) = u ( t ) φ (+1 , t ) = 0 • Problem: control doesn’t enter additively into the equation • Coordinate transformation ψ ( x, t ) = φ ( x, t ) − f ( x ) u ( t ) ⋆ Choose f ( x ) to obtain homogeneous boundary conditions ψ ( ± 1 , t ) = 0 ⋆ Many possible choices Conditions for selection of f : simple option f ( x ) = 1 − x { f ( − 1) = 1 , f (1) = 0 } − − − − − − − − − − − → 2

  7. Draft EE 8235: Lecture 15 7 • In new coordinates: φ t ( x, t ) = φ xx ( x, t ) + d ( x, t ) φ ( − 1 , t ) = u ( t ) φ (+1 , t ) = 0   � φ ( x,t ) = ψ ( x,t ) + f ( x ) u ( t ) ψ t ( x, t ) + f ( x ) ˙ u ( t ) = ψ xx ( x, t ) + f ′′ ( x ) u ( t ) + d ( x, t ) ψ ( ± 1 , t ) = 0 • New input: v ( t ) = ˙ u ( t ) d � � � � � � � � � � ψ ( t ) A 0 f ′′ ψ ( t ) I − f = + d ( t ) + v ( t ) u ( t ) 0 0 u ( t ) 0 I d t � I f � � � ψ ( t ) φ ( t ) = u ( t ) d 2 d x 2 , D ( A 0 ) = { f ∈ L 2 [ − 1 , 1] , f ′′ ∈ L 2 [ − 1 , 1] , f ( ± 1) = 0 } A 0 =

  8. Draft EE 8235: Lecture 15 8 Two point boundary value problems ψ ′ ( x ) = A ( x ) ψ ( x ) + B ( x ) d ( x ) φ ( x ) = C ( x ) ψ ( x ) ν = N a ψ ( a ) + N b ψ ( b ) • Solution: � x φ ( x ) = C ( x ) Φ( x, a ) ( N a + N b Φ( b, a )) − 1 ν + C ( x ) Φ( x, ξ ) B ( ξ ) d ( ξ ) d ξ − a � b C ( x ) Φ( x, a ) ( N a + N b Φ( b, a )) − 1 N b Φ( b, ξ ) B ( ξ ) d ( ξ ) d ξ a Φ( x, ξ ) : the state transition matrix of A ( x ) dΦ( x, ξ ) = A ( x ) Φ( x, ξ ) , Φ( ξ, ξ ) = I d x For systems with A � = A ( x ) : Φ( x, ξ ) = e A ( x − ξ )

  9. Draft EE 8235: Lecture 15 9 Examples • Heat equation with boundary actuation φ t ( x, t ) = φ xx ( x, t ) φ ( − 1 , t ) = u ( t ) φ (+1 , t ) = 0  � Laplace trasform  � ψ ′ � 0 � � ψ 1 ( x, s ) � � 1 ( x, s ) 1 = ψ ′ 2 ( x, s ) s 0 ψ 2 ( x, s ) 0 � � ψ 1 ( x, s ) � 1 � φ ( x, s ) = ψ 2 ( x, s ) � � ψ 1 ( − 1 , s ) � � ψ 1 (1 , s ) � � � � � � u ( s ) 1 0 0 0 = + 0 0 0 1 0 ψ 2 ( − 1 , s ) ψ 2 (1 , s ) N a + N b e A ( s )( b − a ) � − 1 ν ( s ) φ ( x, s ) = C e A ( s )( x − a ) � sinh ( √ s (1 − x )) sinh (2 √ s ) = u ( s ) � � ∞ 1 − x 2 s � = − s + ( nπ/ 2) 2 v n ( x ) u ( s ) 2 nπ n = 1

  10. Draft EE 8235: Lecture 15 10 • Eigenvalue problem for streamwise constant linearized NS equations � L ψ os = λ os ψ os , ψ os ( ± 1) = ψ ′ os ( ± 1) = 0 Orr-Sommerfeld: S u os = λ os u os − C p ψ os , u os ( ± 1) = 0   � ∆ 2 ψ os � = λ os ∆ ψ os , ψ os ( ± 1) = ψ ′ os ( ± 1) = 0 ∆ u os = λ os u os − j k z U ′ ( y ) ψ os , u os ( ± 1) = 0 Two point boundary value problem for u os : � x ′ � � x 1 ( y, k z ) 1 ( y, k z ) � � 0 1 � � 0 � = + ψ os ( y, k z ) λ os + k 2 x ′ 2 ( y, k z ) 0 x 2 ( y, k z ) − j k z U ′ ( y ) z 0 � � x 1 ( y, k z ) � 1 � u os ( y, k z ) = x 2 ( y, k z ) � � x 1 ( − 1 , k z ) � � x 1 (1 , k z ) � � � � 1 0 0 0 0 = + 0 0 1 0 x 2 ( − 1 , k z ) x 2 (1 , k z )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend