introduction to the geometry of moduli spaces of higgs
play

Introduction to the geometry of moduli spaces of Higgs bundles - PowerPoint PPT Presentation

Introduction to the geometry of moduli spaces of Higgs bundles Jochen Heinloth (Universitt Duisburg-Essen) 1 / 18 What are these moduli spaces? Fix: C / k smooth projective curve/compact Riemann surface 2 / 18 What are these moduli spaces?


  1. Introduction to the geometry of moduli spaces of Higgs bundles Jochen Heinloth (Universität Duisburg-Essen) 1 / 18

  2. What are these moduli spaces? Fix: C / k smooth projective curve/compact Riemann surface 2 / 18

  3. What are these moduli spaces? Fix: C / k smooth projective curve/compact Riemann surface G (= GL n ) a reductive group. Bun n space of all GL n -bundles (vector bundles on C ). 2 / 18

  4. What are these moduli spaces? Fix: C / k smooth projective curve/compact Riemann surface G (= GL n ) a reductive group. Bun n space of all GL n -bundles (vector bundles on C ). Higgs-bundles - M Dol T ∗ Bun n = Higgs n = � ( E , θ : E → E ⊗ Ω C ) � ⊇ Higgs d , sst n M Dol := ( Higgs d , sst ) coarse n 2 / 18

  5. What are these moduli spaces? Fix: C / k smooth projective curve/compact Riemann surface G (= GL n ) a reductive group. Bun n space of all GL n -bundles (vector bundles on C ). Higgs-bundles - M Dol T ∗ Bun n = Higgs n = � ( E , θ : E → E ⊗ Ω C ) � ⊇ Higgs d , sst n M Dol := ( Higgs d , sst ) coarse n Connections - M DR Con n := � ( E , ∇ ) |∇ connection on E� → Bun n M DR := Con coarse n 2 / 18

  6. What are these moduli spaces? Fix: C / k smooth projective curve/compact Riemann surface G (= GL n ) a reductive group. Bun n space of all GL n -bundles (vector bundles on C ). Higgs-bundles - M Dol T ∗ Bun n = Higgs n = � ( E , θ : E → E ⊗ Ω C ) � ⊇ Higgs d , sst n M Dol := ( Higgs d , sst ) coarse n Connections - M DR Con n := � ( E , ∇ ) |∇ connection on E� → Bun n M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation 2 / 18

  7. What are these moduli spaces? Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Connections - M DR M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation 3 / 18

  8. What are these moduli spaces? Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Connections - M DR M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation Toy example: GL 1 M Dol = T ∗ Pic ∼ = C g × Pic. M DR = affine bundle over Pic. M Betti ∼ = ( C ∗ ) 2 g 3 / 18

  9. What are these moduli spaces? Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Connections - M DR M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation Toy example: GL 1 M Dol = T ∗ Pic ∼ = C g × Pic. M DR = affine bundle over Pic. M Betti ∼ = ( C ∗ ) 2 g ≃ ( R × S 1 ) 2 g 3 / 18

  10. What are these moduli spaces? Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Connections - M DR M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation Toy example: GL 1 M Dol = T ∗ Pic ∼ = C g × Pic. M DR = affine bundle over Pic. = ( C ∗ ) 2 g ≃ ( R × S 1 ) 2 g ≃ R 2 g × ( S 1 ) 2 g ≃ M Dol M Betti ∼ 3 / 18

  11. What are these moduli spaces? Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Connections - M DR M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation 4 / 18

  12. What are these moduli spaces? Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Connections - M DR M DR := Con coarse n Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation Some variants Can look at bundles with level structures � Repr of π 1 ( C − pts ) with prescribed monodromy at punctures. G non-split, e.g. for k = R . G / C family of groups over C . 4 / 18

  13. Questions (Hitchin) Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation 5 / 18

  14. Questions (Hitchin) Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation What is the global topology (e.g. cohomology) of M ∗ ( C ) ? 5 / 18

  15. Questions (Hitchin) Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation What is the global topology (e.g. cohomology) of M ∗ ( C ) ? How are the extra structures on H ∗ ( M ? ) induced by algebraic structure of M Dol , M Betti related? 5 / 18

  16. Questions (Hitchin) Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation What is the global topology (e.g. cohomology) of M ∗ ( C ) ? How are the extra structures on H ∗ ( M ? ) induced by algebraic structure of M Dol , M Betti related? How are the results for different groups related? 5 / 18

  17. Questions (Hitchin) Higgs-bundles - M Dol M Dol := � ( E , θ : E → E ⊗ Ω C ) � sst , coarse Representations - M Betti M Betti := { ( A i , B i ) ∈ GL 2 g n | � g i = 1 [ A i , B i ] = 1 } / conjugation What is the global topology (e.g. cohomology) of M ∗ ( C ) ? How are the extra structures on H ∗ ( M ? ) induced by algebraic structure of M Dol , M Betti related? How are the results for different groups related? First results: n = 2 Hitchin, n = 3 Gothen: Computed e.g. H ∗ ( M Dol ) . 5 / 18

  18. Plan: M Betti - Method used by Hausel–Rodriguez-Villegas 1 M Dol - Two geometric methods 2 P=W – A conjecture relating the extra structure on H ∗ ’s 3 6 / 18

  19. Point-counting on M Betti Part I 7 / 18

  20. Point-counting on M Betti Part I Weil conjectures allow to deduce H ∗ ( X ( C )) from counting X ( F q ) if X is smooth projective. 7 / 18

  21. Point-counting on M Betti Part I Weil conjectures allow to deduce H ∗ ( X ( C )) from counting X ( F q ) if X is smooth projective. Warning: This does not apply to M Betti ! 7 / 18

  22. Point-counting on M Betti Part I 8 / 18

  23. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G 8 / 18

  24. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G � 1 g = 1 because � χ ∈ Irr G χ ( 1 ) χ ( g ) = 0 otherwise ( Irr G - Irreducible representations, χ characters, ρ χ corresp. representation) 8 / 18

  25. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G � 1 g = 1 because � χ ∈ Irr G χ ( 1 ) χ ( g ) = 0 otherwise For M Betti F = � [ A i , B i ] C this simplifies: ( Irr G - Irreducible representations, χ characters, ρ χ corresp. representation) 8 / 18

  26. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G � 1 g = 1 because � χ ∈ Irr G χ ( 1 ) χ ( g ) = 0 otherwise For M Betti F = � [ A i , B i ] C this simplifies: A ∈ G ρ χ ( ABA − 1 ) = � ( Irr G - Irreducible representations, χ characters, ρ χ corresp. representation) 8 / 18

  27. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G � 1 g = 1 because � χ ∈ Irr G χ ( 1 ) χ ( g ) = 0 otherwise For M Betti F = � [ A i , B i ] C this simplifies: A ∈ G ρ χ ( ABA − 1 ) =# G χ ( B ) � χ ( 1 ) Id ( Irr G - Irreducible representations, χ characters, ρ χ corresp. representation) 8 / 18

  28. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G � 1 g = 1 because � χ ∈ Irr G χ ( 1 ) χ ( g ) = 0 otherwise For M Betti F = � [ A i , B i ] C this simplifies: A ∈ G ρ χ ( ABA − 1 ) =# G χ ( B ) � χ ( 1 ) Id A ρ χ ( ABA − 1 B − 1 ) = � � B ( Irr G - Irreducible representations, χ characters, ρ χ corresp. representation) 8 / 18

  29. Point-counting on M Betti Part I Frobenius knew ( G finite group, F : G k → G ): 1 # { g ∈ G k | F ( g ) = 1 } = � � χ ( 1 ) χ ( F ( g )) # G g χ ∈ Irr G � 1 g = 1 because � χ ∈ Irr G χ ( 1 ) χ ( g ) = 0 otherwise For M Betti F = � [ A i , B i ] C this simplifies: A ∈ G ρ χ ( ABA − 1 ) =# G χ ( B ) � χ ( 1 ) Id χ ( B ) χ ( B − 1 ) A ρ χ ( ABA − 1 B − 1 ) =# G � � � Id = B B χ ( 1 ) ( Irr G - Irreducible representations, χ characters, ρ χ corresp. representation) 8 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend