on the q analogue of cauchy matrices alessandro neri
play

On the q -Analogue of Cauchy Matrices Alessandro Neri 17-21 June - PowerPoint PPT Presentation

On the q -Analogue of Cauchy Matrices Alessandro Neri 17-21 June 2019 - VUB Alessandro Neri 19 June 2019 1 / 19 On the q -Analogue of Cauchy Matrices Alessandro Neri I am a friend of Finite Geometry! 17-21 June 2019 - VUB Alessandro Neri


  1. On the q -Analogue of Cauchy Matrices Alessandro Neri 17-21 June 2019 - VUB Alessandro Neri 19 June 2019 1 / 19

  2. On the q -Analogue of Cauchy Matrices Alessandro Neri I am a friend of Finite Geometry! 17-21 June 2019 - VUB Alessandro Neri 19 June 2019 1 / 19

  3. q -Analogues Model Finite set Finite dim vector space over F q � Element 1-dim subspace � ∅ { 0 } � Cardinality Dimension � Intersection Intersection � Union Sum � Alessandro Neri 19 June 2019 1 / 19

  4. Examples 1. Binomials and q -binomials: k − 1 k − 1 1 − q n − i � n � n − i � n � � � = = k − i , 1 − q k − i . k k q i = 0 i = 0 2. (Chu)-Vandermonde and q -Vandermonde identity: � m k k � m + n � � m �� � � m + n � � � n � n � � q j ( m − k + j ) . = = , k − j k − j k j k j q q q j = 0 j = 0 3. Polynomials and q -polynomials: a 0 x + a 1 x q + . . . + a k x q k . a 0 + a 1 x + . . . + a k x k , 4. Gamma and q -Gamma functions: Γ q ( x + 1 ) = 1 − q x Γ( z + 1 ) = z Γ( z ) , 1 − q Γ q ( x ) . Alessandro Neri 19 June 2019 2 / 19

  5. Vandermonde Matrix Let k ≤ n .   1 1 . . . 1 α 1 α 2 . . . α n    α 2 α 2 α 2  . . . V =  1 2 n   . . .  . . .   . . .   α k − 1 α k − 1 α k − 1 . . . n 1 2 Alessandro Neri 19 June 2019 3 / 19

  6. Vandermonde Matrix Let k ≤ n .   1 1 . . . 1 α 1 α 2 . . . α n    α 2 α 2 α 2  . . . V =  1 2 n   . . .  . . .   . . .   α k − 1 α k − 1 α k − 1 . . . n 1 2 For n = k , det ( V ) � = 0 if and only if the α i ’s are all distinct. |{ α 1 , . . . , α n }| = n . In particular, all the k × k minors of V are non-zero. Alessandro Neri 19 June 2019 3 / 19

  7. Moore Matrix Let k ≤ n .  g 1 g 2 . . . g n  g q g q g q . . . 1 2 n   G = . . .    , . . .   . . .  g q k − 1 g q k − 1 g q k − 1 . . . 1 2 n Alessandro Neri 19 June 2019 4 / 19

  8. Moore Matrix Let k ≤ n .  g 1 g 2 . . . g n  g q g q g q . . . 1 2 n   G = . . .   ,  . . .   . . .  g q k − 1 g q k − 1 g q k − 1 . . . 1 2 n For n = k , det ( G ) � = 0 if and only if the g i ’s are all F q -linearly independent. dim F q � g 1 , . . . , g n � F q = n . In particular, for every M ∈ GL n ( F q ) , all the k × k minors of GM are non-zero. Alessandro Neri 19 June 2019 4 / 19

  9. Moore Matrix → x q Let k ≤ n , σ : x �−   g 1 g 2 . . . g n σ ( g 1 ) σ ( g 2 ) . . . σ ( g n )   G = . . .  ,   . . .   . . .  σ k − 1 ( g 1 ) σ k − 1 ( g 2 ) σ k − 1 ( g n ) . . . For n = k , det ( G ) � = 0 if and only if the g i ’s are all F q -linearly independent. dim F q � g 1 , . . . , g n � F q = n . In particular, for every M ∈ GL n ( F q ) , all the k × k minors of GM are non-zero. Alessandro Neri 19 June 2019 5 / 19

  10. Moore matrix 1. Dickson used the Moore matrix for finding the modular invariants of the general linear group over a finite field. 2. It is widely used in the study of normal bases of finite fields. 3. � � det ( G ) = ( c 1 g 1 + · · · + c i − 1 g i − 1 + g i ) . 1 ≤ i ≤ n c 1 ,..., c i − 1 ∈ F q Alessandro Neri 19 June 2019 6 / 19

  11. Generalized Cauchy Matrix (1) x 1 , . . . , x r ∈ F q pairwise distinct, (2) y 1 , . . . , y s ∈ F q pairwise distinct, (3) y 1 , . . . , y s ∈ F q \ { x 1 , . . . , x r } , (4) c 1 , . . . , c r , d 1 , . . . , d s ∈ F ∗ q . Alessandro Neri 19 June 2019 7 / 19

  12. Generalized Cauchy Matrix (1) x 1 , . . . , x r ∈ F q pairwise distinct, (2) y 1 , . . . , y s ∈ F q pairwise distinct, (3) y 1 , . . . , y s ∈ F q \ { x 1 , . . . , x r } , (4) c 1 , . . . , c r , d 1 , . . . , d s ∈ F ∗ q . The matrix X ∈ F r × s defined by q X i , j = c i d j x i − y j is called Generalized Cauchy (GC) Matrix. For j ≤ min { r , s } , all the j × j minors are non-zero. Alessandro Neri 19 June 2019 7 / 19

  13. Question How to define a q -analogue of Cauchy matrices? Alessandro Neri 19 June 2019 8 / 19

  14. Generalized Reed-Solomon Codes [Reed, Solomon ’60] F q [ x ] < k := { f ( x ) ∈ F q [ x ] | deg f < k } . Alessandro Neri 19 June 2019 9 / 19

  15. Generalized Reed-Solomon Codes [Reed, Solomon ’60] F q [ x ] < k := { f ( x ) ∈ F q [ x ] | deg f < k } . α 1 , . . . , α n ∈ F q distinct elements b 1 , . . . , b n ∈ F ∗ q C = { ( b 1 f ( α 1 ) , b 2 f ( α 2 ) , . . . , b n f ( α n )) | f ∈ F q [ x ] < k } Alessandro Neri 19 June 2019 9 / 19

  16. Generalized Reed-Solomon Codes [Reed, Solomon ’60] F q [ x ] < k := { f ( x ) ∈ F q [ x ] | deg f < k } . α 1 , . . . , α n ∈ F q distinct elements b 1 , . . . , b n ∈ F ∗ q C = { ( b 1 f ( α 1 ) , b 2 f ( α 2 ) , . . . , b n f ( α n )) | f ∈ F q [ x ] < k } THEN C is the Generalized Reed-Solomon code GRS n , k ( α , b ) Alessandro Neri 19 June 2019 9 / 19

  17. Generalized Reed-Solomon Codes [Reed, Solomon ’60] F q [ x ] < k := { f ( x ) ∈ F q [ x ] | deg f < k } . α 1 , . . . , α n ∈ F q s.t. |{ α 1 , . . . , α n }| = n b 1 , . . . , b n ∈ F ∗ q C = { ( b 1 f ( α 1 ) , b 2 f ( α 2 ) , . . . , b n f ( α n )) | f ∈ F q [ x ] < k } THEN C is the Generalized Reed-Solomon code GRS n , k ( α , b ) Alessandro Neri 19 June 2019 9 / 19

  18. Canonical Generator Matrix for GRS codes Consider the canonical monomial basis { 1 , x , . . . , x k − 1 } and evaluate it. We get the following generator matrix Weighted Vandermonde (WV) matrix   1 1 . . . 1 α 1 α 2 . . . α n    α 2 α 2 α 2  . . . diag ( b )  1 2 n   . . .  . . .   . . .   α k − 1 α k − 1 α k − 1 . . . n 1 2 Alessandro Neri 19 June 2019 10 / 19

  19. GRS Codes and Cauchy Matrices 1. Every [ n , k ] q code has many generator matrices G ∈ F k × n . q 2. Every [ n , k ] q code has a unique generator matrix in Reduced Row Echelon Form (RREF). Alessandro Neri 19 June 2019 11 / 19

  20. GRS Codes and Cauchy Matrices 1. Every [ n , k ] q code has many generator matrices G ∈ F k × n . q 2. Every [ n , k ] q code has a unique generator matrix in Reduced Row Echelon Form (RREF). 3. If C is MDS the generator matrix in RREF is of the form ( I k | X ) . 4. GRS codes are MDS. Alessandro Neri 19 June 2019 11 / 19

  21. GRS Codes and Cauchy Matrices 1. Every [ n , k ] q code has many generator matrices G ∈ F k × n . q 2. Every [ n , k ] q code has a unique generator matrix in Reduced Row Echelon Form (RREF). 3. If C is MDS the generator matrix in RREF is of the form ( I k | X ) . 4. GRS codes are MDS. Alessandro Neri 19 June 2019 11 / 19

  22. GRS Codes and Cauchy Matrices 1. Every [ n , k ] q code has many generator matrices G ∈ F k × n . q 2. Every [ n , k ] q code has a unique generator matrix in Reduced Row Echelon Form (RREF). 3. If C is MDS the generator matrix in RREF is of the form ( I k | X ) . 4. GRS codes are MDS. Theorem [Roth, Seroussi ’85] There is a 1-1 correspondence between GC matrices and GRS codes codes given by X ← → rowsp ( I k | X ) . Alessandro Neri 19 June 2019 11 / 19

  23. General Setting � F q m extension field of degree m of a finite field F q . � F q m ∼ = F m q as vector spaces over F q . q m ∼ � F n = F m × n as vector spaces over F q . q Alessandro Neri 19 June 2019 12 / 19

  24. General Setting � F q m extension field of degree m of a finite field F q . � F q m ∼ = F m q as vector spaces over F q . q m ∼ � F n = F m × n as vector spaces over F q . q Rank Distance The rank distance d R on F m × n is defined by q X , Y ∈ F m × n d R ( X , Y ) := rk ( X − Y ) , . q The rank distance d R on F n q m is defined by d R ( u , v ) := dim � u 1 − v 1 , u 2 − v 2 , . . . , u n − v n � F q . A rank metric code C is a subset of F n q m equipped with the rank distance. Alessandro Neri 19 June 2019 12 / 19

  25. Linearized Polynomials and Gabidulin Codes [Delsarte ’78], [Gabidulin ’85], [Roth ’91], [Kshevetskiy, Gabidulin ’05] m − 1 f i x q i a linearized polynomial over F q m , � i = 0 f 0 x + f 1 x q + . . . + f k − 1 x q k − 1 | f i ∈ F q m � � G k := . Alessandro Neri 19 June 2019 13 / 19

  26. Linearized Polynomials and Gabidulin Codes [Delsarte ’78], [Gabidulin ’85], [Roth ’91], [Kshevetskiy, Gabidulin ’05] m − 1 f i x q i a linearized polynomial over F q m , � i = 0 f 0 x + f 1 x q + . . . + f k − 1 x q k − 1 | f i ∈ F q m � � G k := . g 1 , . . . , g n ∈ F q m linearly independent over F q C = { ( f ( g 1 ) , f ( g 2 ) , . . . , f ( g n )) | f ∈ G k } Alessandro Neri 19 June 2019 13 / 19

  27. Linearized Polynomials and Gabidulin Codes [Delsarte ’78], [Gabidulin ’85], [Roth ’91], [Kshevetskiy, Gabidulin ’05] m − 1 f i x q i a linearized polynomial over F q m , � i = 0 f 0 x + f 1 x q + . . . + f k − 1 x q k − 1 | f i ∈ F q m � � G k := . g 1 , . . . , g n ∈ F q m linearly independent over F q C = { ( f ( g 1 ) , f ( g 2 ) , . . . , f ( g n )) | f ∈ G k } THEN C is the Gabidulin code G k ( g 1 , . . . , g n ) Alessandro Neri 19 June 2019 13 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend