status of light sterile neutrinos carlo giunti
play

Status of Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy - PowerPoint PPT Presentation

Status of Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy EPS-HEP2019 2019 European Physical Society Conference on High Energy Physics 10-17 July 2019, Ghent, Belgium C. Giunti Status of Light Sterile Neutrinos EPS-HEP2019


  1. Status of Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy EPS-HEP2019 2019 European Physical Society Conference on High Energy Physics 10-17 July 2019, Ghent, Belgium C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 1/20

  2. Short-Baseline Neutrino Oscillation Anomalies Reactor Anomaly: ¯ ν e → ¯ ν x ( ∼ 3 σ ) Gallium Anomaly: ν e → ν x ( ∼ 3 σ ) 1.20 Bugey−3 Daya Bay Krasnoyarsk RENO Bugey−4+Rovno91 Double Chooz Nucifer Rovno88 1.1 GALLEX SAGE Chooz Gosgen+ILL Palo Verde SRP 1.10 Cr1 Cr R = N exp N cal 1.00 1.0 R = N exp N cal GALLEX SAGE 0.90 Cr2 Ar 0.9 0.80 R = 0.934 ± 0.024 0.8 0.70 10 2 10 3 10 R = 0.84 ± 0.05 L [m] 0.7 m L osc = 4 π E . . . . . . LSND Anomaly: ¯ ν µ → ¯ ν e ( ∼ 4 σ ) ∆ m 2 ν 5 ν s 2 ν 4 ν s 1 � 1 eV 2 ∆ m 2 SBL ν 3 ≃ 2.5 × 10 − 3 eV 2 ∆ m 2 ATM ν 2 ≃ 7.4 × 10 − 5 eV 2 ∆ m 2 SOL ν 1 ν e ν µ ν τ C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 2/20

  3. Efgective 3+1 SBL Oscillation Probabilities SBL U e 1 U e 2 U e 3 U e 4 U s 1 U s 2 U s 3 43 41 L experiments! ATM [de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017, PLB 757 (2016) 142; Kayser et al, JHEP 1511 (2015) SOL [Long, Li, Giunti, PRD 87, 113004 (2013) 113004] 4 E U s 4 P SBL 4 E 41 L P SBL Disappearance Appearance ( α � = β ) � ∆ m 2 � � ∆ m 2 � ≃ sin 2 2 ϑ αβ sin 2 ≃ 1 − sin 2 2 ϑ αα sin 2 ( − ) ( − ) ( − ) ( − ) ν α → ν β ν α → ν α sin 2 2 ϑ αα = 4 | U α 4 | 2 � 1 − | U α 4 | 2 � sin 2 2 ϑ αβ = 4 | U α 4 | 2 | U β 4 | 2 ◮ ∆ m 2 SBL = ∆ m 2 41 ≃ ∆ m 2 42 ≃ ∆ m 2   ◮ CP violation is not observable in SBL     U µ 1 U µ 2 U µ 3 U µ 4 U =       U τ 1 U τ 2 U τ 3 U τ 4   ◮ Observable in LBL accelerator exp. sensitive to ∆ m 2 ◮ 6 mixing angles ◮ 3 Dirac CP phases ◮ 3 Majorana CP phases 039, JHEP 1611 (2016) 122] and solar exp. sensitive to ∆ m 2 C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 3/20

  4. Short-Baseline Reactor Neutrino Oscillations no spectral distortion Chooz near detectors ATM 1.20 Bugey−4 Rovno88 Gosgen Krasnoyarsk Nucifer Rovno91 Bugey−3 ILL SRP 1.10 1.00 P ν e →ν e R 0.90 DC DB DB DC E ≈ 4MeV − sin 2 2 ϑ ee = 0.1 R 0.80 2 = 0.1 eV 2 ∆ m 41 2 = 0.5 eV 2 ∆ m 41 2 = 1.0 eV 2 ∆ m 41 0.70 10 2 10 3 10 1 L [m] SBL � 0 . 5 eV 2 ≫ ∆ m 2 ∆ m 2 ◮ SBL oscillations are averaged at the Daya Bay, RENO, and Double = ⇒ C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 4/20

  5. Reactor Antineutrino 5 MeV Bump [RENO, arXiv:1511.05849] [Daya Bay, arXiv:1508.04233] oscillations (SBL oscillations are averaged in RENO, DC, DB). miscalculation of the spectrum. an excess it increases the anomaly! [Double Chooz, arXiv:1406.7763] uncertainty due to unknown [Hayes and Vogel, ARNPS 66 (2016) 219] of the neutrino fmuxes. (Data - MC) / MC 0.2 ◮ Cannot be explained by neutrino 0.1 0 0.1 − ◮ It is likely due to a theoretical 1 2 3 4 5 6 7 8 Prompt Energy (MeV) ◮ Heretic solution: detector energy Data / Predicted Data 1.4 0.25 MeV No oscillation Reactor flux uncertainty nonlinearity. [Mention et al, PLB 773 (2017) 307] Total systematic uncertainty 1.2 2 Best fit: sin 2 θ = 0.090 13 1.0 ◮ ∼ 3 % efgect on total fmux, but if it is 0.8 ◮ No post-bump complete calculation 0.6 1 2 3 4 5 6 7 8 Visible Energy (MeV) ◮ Nominal Huber-Mueller fmux calculation uncertainty: ∼ 2 . 7 % . ◮ Post-bump estimate of the fmux forbidden decays: ∼ 5 % . C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 5/20

  6. Reactor Fuel Evolution RENO decays of the fjssion products of 235 U 238 U 239 Pu 241 Pu F 235 F 238 F 239 F 241 Daya Bay F 235 ◮ Reactor ¯ ν e fmux produced by the β 0.63 0.60 0.57 0.54 0.51 6.05 σ f [ 10 − 43 cm 2 / fission] 6.00 5.95 ◮ Efgective fjssion fractions: 5.90 5.85 5.80 Best fit Model (Rescaled) ◮ Cross section per fjssion (IBD yield): 5.75 Average Daya Bay 5.70 � σ f = F k σ f , k 0.24 0.26 0.28 0.30 0.32 0.34 0.36 F 239 k = 235 , 238 , 239 , 241 F 239 100 0.35 0.3 0.25 Fission fraction (%) 235 U 90 Data 6 239 Pu / fission] Model (scaled by -6.0%) 80 238 U Best fit 70 241 Pu Identical spectra 5.9 60 Others 2 50 cm 40 -43 5.8 [10 30 20 f y 10 5.7 0.5 0.55 0.6 0.65 0 0 5000 10000 15000 20000 F Burn-up (MWD/TU) 235 C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 6/20

  7. [Giunti, Li, Littlejohn, Surukuchi, PRD 99 (2019) 073005, arXiv:1901.01807] dF 239 Daya Bay Data 6.1 Daya Bay Fit RENO Data 6.0 RENO Fit 5.9 f σ 5.8 5.7 0.26 0.28 0.30 0.32 0.34 F 239 10 10 Daya Bay 9 9 RENO Prediction 8 8 7 7 6 6 2 χ 5 f 5 σ Δ 4 4 3 3 2 2 1 1 0 0 5.6 5.8 6.0 6.2 6.4 − 2.5 − 2.0 − 1.5 − 1.0 d /dF σ σ f f 239 σ f + d σ f � � σ f ( F 239 ) = ¯ F 239 − F 239 C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 7/20

  8. [Giunti, Li, Littlejohn, Surukuchi, arXiv:1901.01807] 235+239: 235+OSC: OSC: 235: Daya Bay Daya Bay and RENO RENO 0.980 5.0 235 235+239 235+OSC 239 OSC 239+OSC σ 239 [10 − 43 cm 2 /fission] 0.965 4.5 HM σ f / σ f 0.950 4.0 0.935 Combined 3.5 1 σ 2 σ 0.920 3 σ 0.25 0.27 0.29 0.31 0.33 0.35 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 F 239 σ 235 [10 − 43 cm 2 /fission] r 235 = 0 . 985 ± 0 . 015 ν e = 0 . 939 ± 0 . 024 P ¯ ν e → ¯ χ 2 / NDF = 9 . 0 / 15 GoF = 88 % χ 2 / NDF = 16 . 3 / 15 GoF = 37 % � r 235 = 0 . 923 ± 0 . 015 � r 235 = 0 . 938 ± 0 . 029 r 239 = 0 . 975 ± 0 . 032 ν e = 0 . 986 ± 0 . 022 ν e → ¯ P ¯ χ 2 / NDF = 8 . 7 / 14 GoF = 85 % χ 2 / NDF = 8 . 8 / 14 GoF = 85 % C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 8/20

  9. oscillations (OSC). [Giunti, Ji, Laveder, Li, Littlejohn, JHEP 1710 (2017) 143, arXiv:1708.01133] reactor antineutrino fmux calculations must be corrected (most likely the 1. The 5 MeV bump 2. The fuel evolution data model-independent information ratios of spectra at difgerent distances ◮ Daya Bay and RENO favor a suppression of the 235 U fmux (235) over ◮ However, a better fjt is obtained with the hybrid model 235+OSC. ◮ Moreover, the addition of other reactor data favors oscillations or, better, 235 U and/or 239 U fmux suppression plus oscillations. ◮ Even if there are short-baseline neutrino oscillations, it is likely that the 235 U fmux) to fjt: ◮ The search for short-baseline neutrino oscillations needs ⇑ C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 9/20

  10. Reactor Spectral Ratios in favor of SBL oscillations Martinez-Soler, Schwetz, arXiv:1803.10661] [PLB 787 (2018) 56, arXiv:1804.04046] DANSS-2018 [Gariazzo, Giunti, Laveder, Li, arXiv:1801.06467] [Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, NEOS [PRL 118 (2017) 121802 (arXiv:1610.05134)] 2018 model independent indication 1 2 3 4 5 6 7 10 1.1 NEOS/Daya Bay (c) Data/Prediction Systematic total 0.76 1.0 Ratio Down/Up 0.72 2 (1.73 eV , 0.050) 2 (2.32 eV , 0.142) 0.9 ⋅ ⋅ 1 2 3 4 5 6 7 10 0.68 Prompt Energy [MeV] DANSS No−Oscillations 10 0.64 NEOS+DANSS−2018 Oscillations Best Fit 1 σ 2 σ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 3 σ Positron Energy [MeV] 2 [eV 2 ] 1 ∆ m 41 NEOS: ∼ 1 . 7 σ DANSS-2018: ∼ 2 . 7 σ 2 σ NEOS Combined: ∼ 3 . 5 σ DANSS−2018 10 − 1 10 − 4 10 − 3 10 − 2 10 − 1 | U e 4 | 2 C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 10/20

  11. New DANSS results @ EPS-HEP 2019 [Danilov @ EPS-HEP 2019] Ratio of positron energy spectra at down and up detector positions 10 (Full data set) NEOS+DANSS−2018 1 σ Preliminar y 2 σ 3 σ 2 [eV 2 ] 1 Δ M 2 =1.33 eV 2 , ∆ m 41 Sin 2 (2 θ )=0.03 ∆Χ 2 =4.3 Δ M 2 =0.35 eV 2 , Sin 2 (2 θ )=0.15 ∆Χ 2 =7.8 DANSS−2019 Best Fit 2 σ - The best 4 ν point ( Δ M 2 =0.35eV 2 , Sin 2 (2 θ )=0.15, ∆Χ 2 =7.8) Solar 2 σ NEOS bound has CL of 1.8σ. DANSS−2018 - Best point in old data ( Δ M 2 =1.33 eV 2 ) is also shown 10 − 1 10 − 4 10 − 3 10 − 2 10 − 1 | U e 4 | 2 ◮ The DANSS-2019 best fjt has too large mixing. ◮ The agreement between NEOS and DANSS has diminished. ◮ Reactor indications in favor of SBL oscillations seem to be fadind away. ◮ We wait independent checks of PROSPECT, STEREO and SoLiD. C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 11/20

  12. The Gallium Anomaly Revisited [Kostensalo, Suhonen, Giunti, Srivastava, arXiv:1906.10980] ◮ New JUN45 shell-model calculation of the cross section of ν e + 71 Ga → 71 Ge + e − 10 10 Reactors 1 σ 2 σ 3 σ 2 [eV 2 ] 2 [eV 2 ] 1 1 ∆ m 41 ∆ m 41 90% CL Gallium − JUN45 Bahcall 68.27% CL (1 σ ) Haxton 90.00% CL 95.45% CL (2 σ ) Frekers 99.00% CL JUN45 99.73% CL (3 σ ) 10 − 1 10 − 1 10 − 3 10 − 2 10 − 1 10 − 3 10 − 2 10 − 1 | U e 4 | 2 | U e 4 | 2 C. Giunti − Status of Light Sterile Neutrinos − EPS-HEP2019 − Ghent − 13 July 2019 − 12/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend