neutrino oscillations and sterile neutrino carlo giunti
play

Neutrino Oscillations and Sterile Neutrino Carlo Giunti INFN, - PowerPoint PPT Presentation

Neutrino Oscillations and Sterile Neutrino Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica, Universit` a di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it The International Workshop on Prospects of


  1. Neutrino Oscillations and Sterile Neutrino Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica, Universit` a di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it The International Workshop on Prospects of Particle Physics: ”Neutrino Physics and Astrophysics” Valday, Russia 26 January - 2 February 2014 C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 1/37

  2. Neutrino Oscillations ◮ 1957: Bruno Pontecorvo proposed Neutrino Oscillations in analogy with K 0 ⇆ ¯ K 0 oscillations (Gell-Mann and Pais, 1955) ◮ Flavor Neutrinos: ν e , ν µ , ν τ produced in Weak Interactions ◮ Massive Neutrinos: ν 1 , ν 2 , ν 3 propagate from Source to Detector ◮ A Flavor Neutrino is a superposition of Massive Neutrinos | ν e � = U e 1 | ν 1 � + U e 2 | ν 2 � + U e 3 | ν 3 � | ν µ � = U µ 1 | ν 1 � + U µ 2 | ν 2 � + U µ 3 | ν 3 � | ν τ � = U τ 1 | ν 1 � + U τ 2 | ν 2 � + U τ 3 | ν 3 � ◮ U is the 3 × 3 Neutrino Mixing Matrix C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 2/37

  3. | ν ( t = 0) � = | ν e � = U e 1 | ν 1 � + U e 2 | ν 2 � + U e 3 | ν 3 � ν 1 ν e ν µ ν 2 ν 3 propagation source detector | ν ( t > 0) � = U e 1 e − iE 1 t | ν 1 � + U e 2 e − iE 2 t | ν 2 � + U e 3 e − iE 3 t | ν 3 �� = | ν e � k = p 2 + m 2 E 2 k at the detector there is a probability > 0 to see the neutrino as a ν µ Neutrino Oscillations are Flavor Transitions ν e → ν µ ν e → ν τ ν µ → ν e ν µ → ν τ ¯ ν e → ¯ ν µ ¯ ν e → ¯ ν τ ν µ → ¯ ¯ ν e ν µ → ¯ ¯ ν τ transition probabilities depend on U and ∆ m 2 kj ≡ m 2 k − m 2 j C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 3/37

  4. Two-Neutrino Mixing and Oscillations | ν α � = cos ϑ | ν 1 � + sin ϑ | ν 2 � ∆ m 2 ≡ ∆ m 2 21 ≡ m 2 2 − m 2 1 | ν β � = − sin ϑ | ν 1 � + cos ϑ | ν 2 � � ∆ m 2 L � P ν α → ν β = P ν β → ν α = sin 2 2 ϑ sin 2 Transition Probability: 4 E Survival Probabilities: P ν α → ν α = P ν β → ν β = 1 − P ν α → ν β 1 0.8 � P ν α → ν β ( L, E ) � 0.6 0.4 0.2 0 0.1 1 10 100 ∆ m 2 [eV 2 ] � L/E � [km / GeV] C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 4/37

  5. Experimental Evidences of Neutrino Oscillations    SNO, BOREXino   Solar Super-Kamiokande  S ≃ 7 . 6 × 10 − 5 eV 2     ∆ m 2     ν e → ν µ , ν τ GALLEX/GNO, SAGE     → sin 2 ϑ S ≃ 0 . 30 Homestake, Kamiokande    VLBL Reactor    (KamLAND)  ν e disappearance ¯     Super-Kamiokande Atmospheric   Kamiokande, IMB    ν µ → ν τ   A ≃ 2 . 4 × 10 − 3 eV 2   ∆ m 2 MACRO, Soudan-2     LBL Accelerator → (K2K, MINOS, T2K) sin 2 ϑ A ≃ 0 . 50 ν µ disappearance       LBL Accelerator   (Opera)   ν µ → ν τ LBL Accelerator   ∆ m 2 (T2K, MINOS)  ν µ → ν e  A   → � � sin 2 ϑ 13 ≃ 0 . 023 LBL Reactor Daya Bay, RENO    ν e disappearance ¯  Double Chooz C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 5/37

  6. Three-Neutrino Mixing Paradigm m 2 m 2 ν e ν µ ν τ ν 3 ν 2 ∆ m 2 S ν 1 ∆ m 2 ∆ m 2 A A ν 2 ∆ m 2 S ν 1 ν 3 Normal Spectrum Inverted Spectrum Recent Global Fits Gonzalez Garcia, Maltoni, Schwetz, Salvado, NuFIT-v1.2 [ http://www.nu-fit.org/ ] Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo, arXiv:1312.2878 C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 6/37

  7. − 0 . 2 × 10 − 5 eV 2 ∆ m 2 S = ∆ m 2 21 ≃ 7 . 5 +0 . 3 uncertainty ≃ 3% − 0 . 1 × 10 − 3 eV 2 ∆ m 2 A = | ∆ m 2 31 | ≃ | ∆ m 2 32 | ≃ 2 . 4 +0 . 1 uncertainty ≃ 4%     s 13 e − i δ 13 c 12 c 13 s 12 c 13 1 0 0 U =  − s 12 c 23 − c 12 s 23 s 13 e i δ 13 c 12 c 23 − s 12 s 23 s 13 e i δ 13   0 e i λ 2  0 s 23 c 13         s 12 s 23 − c 12 c 23 s 13 e i δ 13 − c 12 s 23 − s 12 c 23 s 13 e i δ 13 e i λ 3 c 23 c 13 0 0         0 s 13 e − i δ 13 1 0 0 s 12 0 1 0 0 c 13 c 12   =       0 0 e i λ 2 c 23 s 23 0 1 0 − s 12 c 12 0 0             − s 13 e i δ 13 0 e i λ 3 0 − s 23 c 23 0 0 1 0 0 c 13 ββ 0 ν ϑ 23 = ϑ A Chooz, Palo Verde ϑ 12 = ϑ S sin 2 ϑ 23 ≃ 0 . 4 − 0 . 6 sin 2 ϑ 12 ≃ 0 . 30 ± 0 . 01 T2K, MINOS Daya Bay, RENO sin 2 ϑ 13 ≃ 0 . 023 ± 0 . 002 δ sin 2 ϑ 23 δ sin 2 ϑ 13 δ sin 2 ϑ 12 ≃ 40% ≃ 10% ≃ 5% sin 2 ϑ 23 sin 2 ϑ 13 sin 2 ϑ 12 C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 7/37

  8. Open Problems ◮ ϑ 23 ⋚ 45 ◦ ? ◮ T2K (Japan), NO ν A (USA), IceCube-PINGU, INO (India), . . . ◮ Mass Hierarchy ? ◮ NO ν A (USA), JUNO (China), RENO-50 (Korea), IceCube-PINGU, INO (India), . . . ◮ CP violation ? ◮ NO ν A (USA), LBNE (USA), LAGUNA-LBNO (EU), HyperK (Japan), . . . ◮ Absolute Mass Scale ? ◮ β Decay, Neutrinoless Double- β Decay, Cosmology, . . . ◮ Dirac or Majorana ? ◮ Neutrinoless Double- β Decay, . . . ◮ Beyond Three-Neutrino Mixing ? Sterile Neutrinos ? C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 8/37

  9. Absolute Scale of Neutrino Masses Normal Spectrum Inverted Spectrum Quasi−Degenerate Quasi−Degenerate m 3 m 2 1 1 m 1 m 2 m 1 m 3 m 1 , m 2 , m 3 [eV] m 3 , m 1 , m 2 [eV] 10 − 1 10 − 1 m 2 ∆ m A 2 ∆ m A 2 95% Cosmological Limit 95% KATRIN Sensitivity 95% Cosmological Limit 95% KATRIN Sensitivity m 3 m 1 95% Kinematical Limit 95% Kinematical Limit 10 − 2 10 − 2 ∆ m S 2 m 2 m 1 m 3 Normal Hierarchy Inverted Hierarchy 10 − 3 10 − 3 10 − 3 10 − 2 10 − 1 10 − 3 10 − 2 10 − 1 1 1 Lightest mass: m 1 [eV] Lightest mass: m 3 [eV] m 2 2 = m 2 1 + ∆ m 2 21 = m 2 1 + ∆ m 2 m 2 1 = m 2 3 − ∆ m 2 31 = m 2 3 + ∆ m 2 S A m 2 3 = m 2 1 + ∆ m 2 31 = m 2 1 + ∆ m 2 m 2 2 = m 2 1 + ∆ m 2 21 ≃ m 2 3 + ∆ m 2 A A � A ≃ 5 × 10 − 2 eV Quasi-Degenerate for m 1 ≃ m 2 ≃ m 3 ≃ m ν � ∆ m 2 95% Cosmological Limit: Planck + WMAP9 + highL + BAO [arXiv:1303.5076] C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 9/37

  10. Effective Neutrino Mass in Beta-Decay β = | U e 1 | 2 m 2 1 + | U e 2 | 2 m 2 2 + | U e 3 | 2 m 2 m 2 3 10 ◮ Quasi-Degenerate: � k | U ek | 2 = m 2 Current 95% Bound m 2 β ≃ m 2 ν ν 1 ◮ Inverted Hierarchy: m 2 β ≃ (1 − s 2 13 )∆ m 2 A ≃ ∆ m 2 KATRIN 95% Sensitivity A m β [eV] 10 − 1 IS 95% Cosmological Limit ◮ Normal Hierarchy: ∆ m A 2 m 2 β ≃ s 2 12 c 2 13 ∆ m 2 S + s 2 13 ∆ m 2 A ≃ 2 × 10 − 5 + 6 × 10 − 5 eV 2 10 − 2 NS 1 σ ◮ m β � 4 × 10 − 2 eV 2 σ 3 σ ⇓ 10 − 3 10 − 3 10 − 2 10 − 1 1 10 Normal Spectrum m min [eV] C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 10/37

  11. Majorana ν : Neutrinoless Double-Beta Decay Arsenic 1 / 2 ) − 1 = G 0 ν |M 0 ν | 2 m 2 ( T 0 ν ββ 76 β + 33 As Germanium β − Effective Majorana Mass 76 32 Ge � � � � 3 � � � β − β − U 2 m ββ = � ek m k � Selenium � � k =1 76 34 Se EXO + KamLAND-Zen 56 Ba + e − + e − 136 54 Xe → 136 d u W � [PRL 109 (2012) 032505; PRL 110 (2013) 062502] e U ek | m ββ | � 0 . 12 − 0 . 25 eV (90%C.L.) m � k k GERDA 34 Se + e − + e − 76 32 Ge → 76 U ek � e [PRL 111 (2013) 122503] W | m ββ | � 0 . 2 − 0 . 6 eV (90%C.L.) d u C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 11/37

  12. Effective Majorana Neutrino Mass m ββ = | U e 1 | 2 m 1 + | U e 2 | 2 e i α 2 m 2 + | U e 3 | 2 e i α 3 m 3 1 90% GERDA ◮ Quasi-Degenerate: � 90% EXO+KLZ 10 − 1 1 − s 2 2 ϑ 12 s 2 | m ββ | ≃ m ν α 2 IS ◮ Inverted Hierarchy: |m ββ | [eV] 95% Cosmological Limit � 10 − 2 ∆ m 2 A (1 − s 2 2 ϑ 12 s 2 | m ββ | ≃ α 2 ) ◮ Normal Hierarchy: NS 10 − 3 | m ββ | ≃ | s 2 S + e i α s 2 � ∆ m 2 � ∆ m 2 A | 12 13 ≃ | 2 . 7 + 1 . 2 e i α | × 10 − 3 eV 1 σ 2 σ m 1 � 10 − 3 eV ⇒ cancellation? 3 σ 10 − 4 10 − 4 10 − 3 10 − 2 10 − 1 1 m min [eV] | m ββ | � 10 − 2 eV = ⇒ Normal Spectrum C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 12/37

  13. Beyond Three-Neutrino Mixing: Sterile Neutrinos ν s 1 ν s 2 · · · ν τ ν µ ν e ν 1 ν 2 ν 3 ν 4 ν 5 · · · m 2 m 2 m 2 m 2 m 2 log m 2 1 2 3 4 5 ∆ m 2 ∆ m 2 ∆ m 2 SOL ATM SBL 3 ν -mixing C. Giunti − Neutrino Oscillations and Sterile Neutrino − PPP 2014 − 27 Jan 2014 − 13/37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend