neutrino mixing and oscillations
play

Neutrino Mixing and Oscillations Carlo Giunti INFN, Sez. di Torino, - PowerPoint PPT Presentation

Neutrino Mixing and Oscillations Carlo Giunti INFN, Sez. di Torino, and Dip. di Fisica Teorica, Universit` a di Torino giunti@to.infn.it Part 1: Neutrino Masses and Mixing Part 2: Neutrino Oscillations in Vacuum and in Matter Part 3:


  1. � � � � � � � � � � � � � � � � � � � Dirac and Majorana Degrees of Freedom CPT CPT p, − h ) p, − h ) ν ( � p, h ) ν ( � ¯ ν ( � p, h ) ν ( � � � � � � � � � � � � � � � � � � � � � 180 ◦ Rotation Boost Boost Boost Boost � � � ����� � ����� � � � � � � � ν ( − � p, − h ) ν ( − � ν ( − � p, − h ) ν ( − � ¯ p, h ) p, h ) CPT CPT ν ( � p, h ) and ¯ ν ( − � p, h ) ν ( � p, h ) and ν ( − � p, h ) ν ( − � p, − h ) and ¯ ν ( � p, − h ) ν ( − � p, − h ) and ν ( � p, − h ) have different interactions have same interactions ⇓ ⇓ four degrees of freedom two degrees of freedom C. Giunti , Neutrino Mixing and Oscillations − 14

  2. Majorana Mass ∇ ) χ L + m σ 2 χ ∗ σ · � ( ∂ 0 − � Two-Component Majorana Equation: L = 0 � � � 0 � � � Four Components σ · � i ( ∂ 0 − � ∇ ) 0 − iσ 2 χ ∗ − ( m 0 0 m ) = 0 L χ L σ · � ∇ ) 0 i ( ∂ 0 + � 0 � �� � (chiral representation) � �� � ν L ν c L iγ µ ∂ µ ν L + mν c Four-Component Majorana Equation: L = 0 Lagrangian: L L = 1 2 [ − iν L γ µ ( ∂ µ ν L ) + i ( ∂ µ ν L ) γ µ ν L − m ( ν c L ν L + ν L ν c )] L � �� � − ν T L C † ν L + ν L C ν L T � �� � T , ν c ν c L = − ν T L C † L = C ν L − νL C T νLT Euler-Lagrange ∂ ( ∂ µ ν L ) − ∂ L L ∂ L L ∂ν L = 0 ⇒ 1 T − m C T ν L 2( iγ µ ∂ µ ν L + iγ µ ∂ µ ν L + m C ν L T ∂ µ ) = 0 Equations | {z } −C ν LT � � L M L = − 1 L ν L + ν L ν c ν c Majorana Mass Term: 2 m L C. Giunti , Neutrino Mixing and Oscillations − 15

  3. Majorana Neutrino ⇐ ⇒ No Conserved Lepton Number L e , L µ , L τ , L = L e + L µ + L τ ❩❩❩ ✚ ❩❩❩ ✚ ✚✚✚ ✚✚✚ ν c = ν L = − 1 L = +1 ← − − → ❩ ❩ Noether − − − − − − → Conserved Lepton Number Global Gauge Invariance ← − − − − − − Theorem Dirac mass term Majorana mass term � � L D = − m D ( ν L ν R + ν R ν L ) L M = − m M ν L ν c L + ν c L ν L invariant under not invariant under L → e − i Λ ν c ν L → e i Λ ν L ν R → e i Λ ν R ν L → e i Λ ν L ν c L ν L → e − i Λ ν L ν R → e − i Λ ν R ν L → e − i Λ ν L ν c L → e i Λ ν c L Majorana Neutrino = Truly Neutral Fermion C. Giunti , Neutrino Mixing and Oscillations − 16

  4. the chiral fields ν L and ν R (if it exists!) are the building blocks of the neutrino Lagrangian ONLY ν L = ⇒ Majorana Mass Term � � � � L = − 1 2 m L ν ν = − 1 L ) = − 1 L M ( ν L + ν c L ν L + ν L ν c ν L + ν c ν c 2 m L 2 m L L L = 1 L C † ν L − ν L C ν L 2 m L ( ν T T ) � �� � L = C ν LT , ν † L C ν ∗ ν c ν c L = − ν T L C † L ⇒ ν L AND ν R = Dirac Mass Term L D = − m D ν ν = − m D ( ν L + ν R ) ( ν L + ν R ) = − m D ( ν L ν R + ν R ν L ) C. Giunti , Neutrino Mixing and Oscillations − 17

  5. SURPRISE! ν L AND ν R = ⇒ Dirac–Majorana Mass Term   L D+M = L M L + L M R + L D  m L m D      M = � � m D m R  m L m D  ν L = − 1  + H . c .  ν c ν R   L 2 ν c m D m R  ν L R  N L = = 1 L C † M N L + H . c . ν c 2 N T R     diagonalization  ν 1 L  m 1 0 U T M U =   N L = U n L , n L = ⇒ ⇓ ν 2 L 0 m 2 fields with definite mass � � L D+M = 1 kL C † ν kL + h . c . = − 1 m k ν T m k ν k ν k 2 2 k =1 , 2 k =1 , 2 ν k = ν kL + ν c Massive neutrinos are Majorana! kL C. Giunti , Neutrino Mixing and Oscillations − 18

  6. 0 1 0 1 @ m L m D @ ν L “ ” L D+M = − 1 A + H . c . = 1 L C † M N L + H . c . 2 N T ν c ν R A L 2 ν c m D m R R m L , m R can be chosen real ≥ 0 by rephasing the fields ν L , ν R simplest case: real m D = ⇒ U = O ρ (CP invariance) ` m L m D ` cos ϑ “ ” | ρ k | 2 = 1 , “ ” ρ 1 0 ρ 1 cos ϑ ρ 2 sin ϑ sin ϑ ´ ´ O = M = , , ρ = , U = m D m R − sin ϑ cos ϑ 0 ρ 2 − ρ 1 sin ϑ ρ 2 cos ϑ “ m ′ 2 m D 2 , 1 = 1 » – q O T M O = 0 ” ( m L − m R ) 2 + 4 m 2 ⇒ tan 2 ϑ = m ′ = 1 , m L + m R ± m ′ D 0 m R − m L 2 2 1 negative if m 2 m ′ D > m L m R ” “ m ′ „ « „ « ρ 2 1 m ′ ρ 2 U T MU = ρ T O T M O ρ = “ ” “ ” 0 0 1 = ± 1 ρ 1 0 ρ 1 0 = ⇒ m k = ρ 2 k m ′ 1 = 1 m ′ 2 m ′ k 0 ρ 2 0 ρ 2 ρ 2 ρ 2 0 0 2 =1 2 2      cos ϑ sin ϑ  i cos ϑ sin ϑ ρ 2  ρ 2  ⇒ U = 1 = − 1 = ⇒ U = 1 = 1 = − sin ϑ cos ϑ − i sin ϑ cos ϑ C. Giunti , Neutrino Mixing and Oscillations − 19

  7. → η k γ 0 ν k ( t, − � CP η k = i ρ 2 − − k = ± i ν k ( t,� x ) x ) CP parity of ν k [Wolfenstein, Phys. Lett. B107 (1981) 77] important in neutrinoless double- β decay [Bilenky, Nedelcheva, Petcov, Nucl. Phys. B247 (1984) 61] [Kayser, Phys. Rev. D30 (1984) 1023]   → η k γ 0 ν c CP − − k ( t, − � ν k ( t,� x ) x ) the product of the CP parities of in general k γ 0 ν k ( t, − � CP  particle and antiparticle is − 1 ν c → − η ∗ − − k ( t,� x ) x ) T ) ( | η k | 2 = 1 , ψ c = C ψ ⇒ η k = − η ∗ Majorana Constraint ν c k = ν k = k = ⇒ η k = ± i imaginary CP parity! C. Giunti , Neutrino Mixing and Oscillations − 20

  8. � ν L � CP transformation of N L = is determined by CP invariance of Lagrangian ν c R L D+M = − 1 L M N L − 1 2 N L M ∗ N c ( M T = M ) 2 N c L 9 → ξ γ 0 N c CP N L − − = → 1 L + 1 L ξ † M ∗ ξ † N L L CP L D+M 2 N L ξ M ξ N c 2 N c ⇒ − − = → − ξ † γ 0 N L CP N c − − ; L 8 → i γ 0 N c CP N L − − < L M real ⇒ CP invariance ⇔ ξ M ξ = − M ⇒ ξ = ( i 0 0 i ) = i I ⇒ → i γ 0 N L CP N c − − : L n L = U † N L U = O ρ N L = U n L ρ kj = ρ k δ kj O T O = I L = U ∗ n c L = U T N c N c n c ρ 2 k = ± 1 L L n L = U † N L → i U † γ 0 N c L = i U † U ∗ γ 0 n c CP − − � �� � L η � � ∗ = i � � ∗ = i ρ 2 η = i U † U ∗ = i U T U ρ O T O ρ η k = iρ 2 k = ± i C. Giunti , Neutrino Mixing and Oscillations − 21

  9. = − g 2 ν L γ µ ℓ L W µ − g 2 ℓ L γ µ ν L W † CP invariance of L CC √ √ µ ? I T → i γ 0 C ν LT → i γ 0 C ℓ L CP CP − − − − ν L ℓ L CP → − W µ † W µ − − L C † γ 0 L C † γ 0 CP CP → − i ν T → − i ℓ T − − − − ν L ℓ L → − g 2 ℓ L γ µ † ν L W µ † − g 2 ν L γ µ † ℓ L W µ CP L CC − − √ √ I � γ † � � � γ µ † = γ 0 † ,� γ 0 , − � = γ = γ µ → − g ℓ L γ µ ν L W µ † − g CP L CC ν L γ µ ℓ L W µ − − √ √ I 2 2 CP invariance OK! CP parity of charged lepton is also imaginary! C. Giunti , Neutrino Mixing and Oscillations − 22

  10. Maximal Mixing » – q 2 m D 2 , 1 = 1 ( m L − m R ) 2 + 4 m 2 m ′ tan 2 ϑ = m L + m R ± D m R − m L 2 m ′ m L = m R = ⇒ ϑ = π/ 4 , 2 , 1 = m L ± | m D | 8 ρ 2 ν 1 L = − i 2 ( ν L − ν c m 1 = | m D | − m L , 1 = − 1 , R ) < √ | m D | > m L ≥ 0 ⇒ ρ 2 1 2 ( ν L + ν c m 2 = | m D | + m L , 2 = +1 , ν 2 L = R ) : √ 8 ν 1 = ν 1 L + ν c 2 [( ν L + ν R ) − ( ν c L + ν c 1 L = − i < R )] √ Majorana Neutrino Fields: ν 2 = ν 2 L + ν c 1 2 [( ν L + ν R ) + ( ν c L + ν c 2 L = R )] : √ C. Giunti , Neutrino Mixing and Oscillations − 23

  11. ⇒ m L = m R = 0 = Dirac Neutrino Field ν 1 and ν 2 have the same mass m 1 = m 2 = | m D | and opposite CP parities. The two Majorana fields ν 1 and ν 2 can be combined to give one Dirac field ν 1 √ ν = 2 ( iν 1 + ν 2 ) = ν L + ν R Viceversa, one Dirac field ν can always be splitted in two Majorana fields „ « „ ν + ν c « − i ν − ν c ν = 1 i + 1 1 2 [( ν − ν c ) + ( ν + ν c )] = √ √ √ √ √ = ( iν 1 + ν 2 ) 2 2 2 2 2  ν 1 = − i  2 ( ν − ν c ) √  Majorana Neutrino Fields ( ν 1 = ν c 1 , ν 2 = ν c 2 ): 1  ( ν + ν c )  √ ν 2 = 2 In general: one Dirac field ≡ two Majorana fields with same mass and opposite CP parities C. Giunti , Neutrino Mixing and Oscillations − 24

  12. CP parity of Dirac = 2 Majorana neutrino field → − i γ 0 ν 1 ( t, − � → i γ 0 ν 2 ( t, − � CP CP ν 1 ( t,� x ) − − x ) ν 2 ( t,� x ) − − x ) 1 → i γ 0 1 CP √ √ ν = 2 ( iν 1 + ν 2 ) − − 2 ( − iν 1 + ν 2 ) 1 L = − i ν 1 = ν 1 L + ν c 2 [( ν L + ν R ) − ( ν c L + ν c R )] √ 1 ν 2 = ν 2 L + ν c 2 [( ν L + ν R ) + ( ν c L + ν c 2 L = R )] √ → i γ 0 ( ν c CP L + ν c R ) = i γ 0 ν c − − ν Dirac neutrino field has definite CP parity = i C. Giunti , Neutrino Mixing and Oscillations − 25

  13. Pseudo-Dirac Neutrinos 2 , 1 ≃ m L + m R m ′ ρ 2 ρ 2 m L , m R ≪ | m D | ⇒ ± | m D | ⇒ 1 = − 1 , = = 2 = +1 2 m 1 ≃ | m D | − m L + m R m 2 ≃ | m D | + m L + m R ∆ m 2 ≃ | m D | ( m L + m R ) , = ⇒ 2 2 2 m D tan 2 ϑ = ≫ 1 = ⇒ ϑ ≃ π/ 4 practically maximal mixing! m R − m L ν 1 L ≃ − i 2 ( ν L − ν c 1 R ) ν L ≃ 2 ( iν 1 L + ν 2 L ) √ √ ⇐ ⇒ 1 2 ( ν L + ν c ν c 1 ν 2 L ≃ R ) R ≃ 2 ( − iν 1 L + ν 2 L ) √ √ 0 1 0 1 0 1 @ i 1 @ 1 1 @ i 0 1 1 A = U ≃ √ √ A A 2 2 − i − 1 1 1 0 1 active ( ν L ) – sterile ( ν R ) oscillations! C. Giunti , Neutrino Mixing and Oscillations − 26

  14. See-Saw Mechanism [Yanagida, 1979] [Gell-Mann, Ramond, Slansky, 1979] [Witten, Phys. Lett. B91 (1980) 81] [Mohapatra, Senjanovic, Phys. Rev. Lett. 44 (1980) 912] » – q 2 m D 2 , 1 = 1 ( m L − m R ) 2 + 4 m 2 m ′ tan 2 ϑ = m L + m R ± D m R − m L 2 1 ≃ − ( m D ) 2 tan 2 ϑ = 2 m D m ′ m ′ m L = 0 , | m D | ≪ m R = ⇒ , , 2 ≃ m R m R m R ν m 1 ≃ ( m D ) 2 ρ 2 1 ≪ | m D | 1 = − 1 m R ν ρ 2 m 2 ≃ m R 2 = +1 2 tan ϑ ≃ m D ν 2 L ≃ ν c ≪ 1 ⇒ ν 1 L ≃ − ν L , = R m R Example: | m D | ∼ M EW ∼ 10 2 GeV , m R ∼ M GUT ∼ 10 15 GeV m 1 ∼ 10 − 2 eV ⇒ =    0 m D  See-Saw Mass Matrix: M = Why m L = 0 ? m D m R C. Giunti , Neutrino Mixing and Oscillations − 27

  15.    ν L � I 3 =1 / 2 L M ∼ ν T L σ 2 Φ) C − 1 (Φ T σ 2 L L ) Symmetry  ( L T ν T − − − − − → L L = L ν L L ν L Breaking ℓ L non-renormalizable I 3 =1 doublet triplet Effective Lagrangian [Weinberg, Phys. Rev. Lett. 43 (1979) 1566, Phys. Rev. D22 (1980) 1694] [Weldon, Zee, Nucl. Phys. B173 (1980) 269] minimum dimension lepton-number violating operator invariant under SU(2) L × U(1) Y g L σ 2 Φ) C − 1 (Φ T σ 2 L L ) + H . c . M ( L T “ ” “ ” φ + Symmetry 0 Φ ≡ − − − − − → √ φ 0 v/ 2 Breaking gv 2 L C − 1 ν L + H . c . ∼ − m 2 L M = 1 M ( ν L ) c ν L + H . c . M ν T D 2 m L ∼ m 2 Plausible Cut-Off: M � M P ∼ 10 19 GeV D See-Saw Type M C. Giunti , Neutrino Mixing and Oscillations − 28

  16. General Considerations on Fermion Masses In Standard Model fermion masses are generated through Yukawa couplings � y ℓ L H,ℓ = − αβ L αL Φ ℓ βR + H . c . α,β = e,µ,τ the coefficients y α,β are parameters of the model ⇓ explanation of parameters must come from new physics Beyond the SM ⇓ all fermion masses give info on new physics BSM C. Giunti , Neutrino Mixing and Oscillations − 29

  17. u s d b t � � � � 1 2 3 e � � 4 � 3 � 2 � 1 0 1 2 3 4 5 6 7 8 9 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ⇒ more info? smallness of ν masses is additional mystery = m [ eV ℄   ⋆ See-Saw Mechanism known natural explanations of smallness of ν masses:  ⋆ Effective Lagrangian   ⋆ Majorana ν masses!    see-saw type relation m light ∼ m 2 D both imply ⋆  M    New high energy scale M ⋆ general features of SU(2) L × U(1) Y invariant models with additional scalars and fermions (unless special symmetries forbid all Majorana mass terms) C. Giunti , Neutrino Mixing and Oscillations − 30

  18. neutrino masses provide a window on New Physics Beyond the Standard Model most accessible window on NPBSM at low energy the lepton-number violating dimension 5 operator ( L T L )(Φ T Φ) → m L ν T L ν L is the operator beyond the Standard Model with minimum dimension (quarks are Dirac!) Y ( q U Y ( q D Y ( L L ) = − 1 , Y ( ℓ R ) = − 2 , R ) = − 2 / 3 Y (Φ) = 1 , Y ( Q L ) = 1 / 3 , R ) = 4 / 3 , next: lepton and barion number violating dimension 6 operators ∼ qqqℓ ( ∆ L = ∆ B ) T q U T ℓ R “ ” “ ” “ ” “ ” “ ” “ ” q D Q T Q T q U Q T Q T L L L , L Q L , L Q L L L L , R R R T q U T ℓ R T q U T ℓ R “ ” “ ” “ ” “ ” p → e + π 0 , q D q U q U q D ⇒ , = etc. R R R R R R C. Giunti , Neutrino Mixing and Oscillations − 31

  19. Majorana mass term for ν R respects SU(2) L × U(1) Y Standard Model Symmetry! � � R = − 1 L M R ν R + ν R ν c ν c 2 m R Majorana mass term for ν R breaks Lepton number conservation!   − Lepton number can be explicitly broken       − Lepton number is spontaneously broken locally, with a mas- Three possibilities: sive vector boson coupled to the lepton number current     − Lepton number is spontaneously broken globally and a    massless Goldstone boson appears in the theory (Majoron) C. Giunti , Neutrino Mixing and Oscillations − 32

  20. Singlet Majoron Model [Chikashige, Mohapatra, Peccei, Phys. Lett. B98 (1981) 265, Phys. Rev. Lett. 45 (1980) 1926] � � L L Φ ν R + ν R Φ † L L L Φ = − y d − − − − → − m D ( ν L ν R + ν R ν L ) � Φ �� =0 � � � � R ν R + η † ν R ν c − 1 η ν c ν c R ν R + ν R ν c L η = − y s − − − − → 2 m R R R � η �� =0 � � � ν L � L mass = − 1 η = 2 − 1 / 2 ( � η � + ρ + i χ ) 0 m D 2 ( ν c L ν R ) + H . c . ν c m D m R R ⇒ See-Saw: m 1 ≃ m 2 ≫ m R m D = D m R scale of L violation EW scale ρ = massive scalar χ = massless pseudoscalar Goldstone boson = Majoron " # « 2 Majoron weakly coupled L χ − ν = iy s ν 2 γ 5 ν 2 − m D „ m D ν 2 γ 5 ν 1 + ν 1 γ 5 ν 2 ν 1 γ 5 ν 1 ˆ ´ √ χ + m R m R 2 to light neutrino Majoron weakly coupled weak long-range force m 2 χ − f = ± y s G F L eff D χ fγ 5 f 16 π 2 m f to matter through with spin-dependent m R potential ∼ 10 − 65 cm 2 /r 3 W − ν loop and Z − χ mixing C. Giunti , Neutrino Mixing and Oscillations − 33

  21. Three-Neutrino Mixing [Bilenky & Petcov, Rev. Mod. Phys. 59 (1987) 671] Dirac neutrino mass term generated SM with ν eR , ν µR , ν τR = ⇒ by standard Higgs mechanism � L D = − M D = complex 3 × 3 matrix ν αR M D αβ ν βL + H . c . ( α, β = e, µ, τ ) α,β M D can be diagonalized by the biunitary transformation V † M D U = M V † = V − 1 , U † = U − 1 , M kj = m k δ kj , real m k ≥ 0 POSSIBLE? C. Giunti , Neutrino Mixing and Oscillations − 34

  22. Proof that M D can be diagonalized by a biunitary transformation consider M D ( M D ) † : Hermitian = ⇒ can be diagonalized by the unitary transformation V † M D ( M D ) † V = M 2 , V † = V − 1 , M 2 kj = m 2 real m 2 k δ kj , k choosing an appropriate matrix U , it is always possible to write � M D = V M U † V † M D U = M m 2 ⇒ with M kj = k δ kj = m k δ kj = only problem: is U unitary? U † = M − 1 V † M D , U = ( M D ) † V M − 1 ( M † = M ) magically U is unitary! U † U = M − 1 V † M D ( M D ) † V M − 1 = 1 UU † = ( M D ) † V M − 2 V † M D = ( M D ) † V V † (( M D ) † ) − 1 ( M D ) − 1 V V † M D = 1 C. Giunti , Neutrino Mixing and Oscillations − 35

  23. 3 � L D = − diagonalized Dirac mass term: m k ν k ν k k =1  3 �    ν αL = U αk ν kL   k =1 mixing: ( α = e, µ, τ ) 3 �    ν αR = V αk ν kR   k =1 no right-handed fields in weak interaction Lagrangian ⇓ right-handed singlets are sterile and not mixed with active neutrinos 3 � � � † = 2 j CC weak charged current: ℓ αL γ ρ ν αL = 2 ℓ αL γ ρ U αk ν kL ρ α = e,µ,τ α = e,µ,τ k =1 U = unitary 3 × 3 mixing matrix we assumed for simplicity that the mass matrix of charged leptons is diagonal otherwise U = U ( ℓ ) † U ( ν ) C. Giunti , Neutrino Mixing and Oscillations − 36

  24. Physical Parameters in N × N Mixing Matrix   N ( N − 1) Mixing Angles N × N Unitary Mixing Matrix ⇒ N 2 parameters 2  N ( N +1) Phases 2 � � † = 2 j CC Weak Charged Current: ℓ αL γ ρ ν αL = 2 ℓ αL γ ρ U αk ν kL ρ α α,k Lagrangian is invariant under global phase transformations of Dirac fields  � † → 2 j CC ℓ αL e − iθ α γ ρ U αk e iφ k ν kL   ρ       α,k ℓ α → e iθ α ℓ α � ℓ αL e − i ( θ e − φ 1 ) e − i ( θ α − θ e ) γ ρ U αk e i ( φ k − φ 1 ) ν kL ⇒ = = 2   ν k → e iφ k ν k   ↑ ↑ ↑ α,k    1 N − 1 N − 1 number of independent phases that can be eliminated: 2 N − 1 (not 2 N !) number of physical phases: N ( N + 1) − (2 N − 1) = ( N − 1) ( N − 2) 2 2 ⇒ conservation of L remains global phase freedom of lepton fields = C. Giunti , Neutrino Mixing and Oscillations − 37

  25. N × N Unitary Mixing Matrix: N ( N − 1) Mixing Angles and ( N − 1) ( N − 2) Phases 2 2 N = 3 ⇒ 3 Mixing Angles and 1 Physical Phase (as in the quark sector) standard parameterization (convenient) ( c ij ≡ cos ϑ ij , s ij ≡ sin ϑ ij )       0 s 13 e − iδ 13 1 0 0 c 13 c 12 s 12 0             U = R 23 W 13 R 12 = 0 c 23 s 23 0 1 0 − s 12 c 12 0       − s 13 e iδ 13 0 0 − s 23 c 23 c 13 0 0 1   s 13 e − iδ 13 c 12 c 13 s 12 c 13     − s 12 c 23 − c 12 s 23 s 13 e iδ 13 c 12 c 23 − s 12 s 23 s 13 e iδ 13 = s 23 c 13   s 12 s 23 − c 12 c 23 s 13 e iδ 13 − c 12 s 23 − s 12 c 23 s 13 e iδ 13 c 23 c 13 phase δ 13 associated with s 13 ⇒ CP violation is small if ϑ 13 is small in other parameterizations phase can be associated with s 12 or s 23 ⇓ CP violation is small if any mixing angle is small if any element of U is zero the phase can be rotated away ⇒ no CP violation C. Giunti , Neutrino Mixing and Oscillations − 38

  26. µ ± → e ± + γ Dirac mass term allows L e , L µ , L τ violating processes like � µ ± → e ± + e + + e − W W µ − → e − + γ � � � � e k � U U ek �k (A) � U ∗ µk U ek = 0 ⇒ GIM Mechanism W W � � k � � 2 � � � � � � Γ = G F m 5 � � � e � � e 3 α m k k k � � µ U ∗ µk U ek � � 192 π 3 32 π � m W � (B) (C) k � �� � BR Suppression factor: m k � 10 − 11 for m k � 1 eV m W ( BR ) exp � 10 − 11 ( BR ) the � 10 − 25 14 orders of magnitude smaller! C. Giunti , Neutrino Mixing and Oscillations − 39

  27. NUMBER OF MASSIVE NEUTRINOS? Z → ν ¯ ⇒ ν ν e ν µ ν τ active flavor neutrinos N � N ≥ 3 ⇒ mixing ν αL = U αk ν kL α = e, µ, τ no upper limit! k =1 · · · Mass Basis: ν 1 ν 2 ν 3 ν 4 ν 5 Flavor Basis: ν e ν µ ν τ ν s 1 ν s 2 · · · ACTIVE STERILE STERILE NEUTRINOS singlets of SM = ⇒ no interactions! active → sterile transitions are possible if ν 4 , . . . are light (no see-saw) ⇓ disappearance of active neutrinos C. Giunti , Neutrino Mixing and Oscillations − 40

  28. Dirac-Majorana mass term active ν αL ( α = e, µ, τ ) + sterile ν sR ( s = s 1 , s 2 , . . . , s N ) � L D = − ν sR M D sα ν αL + H . c . s,α � L = − 1 L M αL M L ν c L D+M = L M L + L D + L M αβ ν βL + H . c . 2 R α,β � R = − 1 L M ν sR M R ss ′ ν c s ′ R + H . c . 2 s,s ′ M D , M L , M R are complex matrices M L , M R are symmetric C. Giunti , Neutrino Mixing and Oscillations − 41

  29. αL = C ν αLT , ν c αL = − ν T αL C † ν c example:  � � αL C † M L  αL M L ν T ν c αβ ν βL = − αβ ν βL      α,β α,β   �   βL ( C † ) T M L  ν T  = αβ ν αL     α,β  M L αβ = M L   � βα  C T = −C � = − βL C † M L ν T αβ ν αL ⇒ = �   α,β  M L is symmetric!  �    βL M L ν c = αβ ν αL      α,β   �    αL M L ν c  α ⇆ β � = βα ν βL   α,β C. Giunti , Neutrino Mixing and Oscillations − 42

  30. L D+M = L M L + L D + L M R � � � = − 1 sα ν αL − 1 αL M L ν sR M D ν sR M R ss ′ ν c ν c αβ ν βL − s ′ R + H . c . 2 2 s,s ′ s,α α,β write Lagrangian in compact form for mass diagonalization       ν c ν eL s 1 R      ν L .      ν c . column matrix of left-handed fields: N L ≡ ν L ≡ R ≡ ν µL   .     ν c R ν c ν τL s N R L D+M = − 1 L M D+M N L + H . c . = 1 L C † M D+M N L + H . c . 2 N T 2 N c    M L ( M D ) T M D+M ≡  (3 + N ) × (3 + N ) symmetric mass matrix: M D M R U T M D+M U = M , m k ≥ 0 , diagonalization: N L = U n L , M kj = m k δ kj , U † = U − 1 POSSIBLE? C. Giunti , Neutrino Mixing and Oscillations − 43

  31. Proof that M D+M = ( M D+M ) T can be diagonalized by U T M D+M U = M an arbitrary complex matrix can be diagonalized by the biunitary transformation V † M D+M W = M , V † = V − 1 , W † = W − 1 m k ≥ 0 , M kj = m k δ kj ,   M D+M = V M W †    M D+M ( M D+M ) † = V M 2 V † ⇒ = = M D+M ( M D+M ) † = ( W † ) T M 2 W T    ( M D+M ) T = ( W † ) T M V T V M 2 V † = ( W † ) T M 2 W T W T V M 2 = M 2 W T V ⇒ W T V = D , D kj = e 2 iλ k δ kj M D+M = V M W † = ( W † ) T W T V M W † = ( W † ) T D M W † = ( W † ) T D 1 / 2 M D 1 / 2 W † = ( D 1 / 2 W † ) T M ( D 1 / 2 W † ) = ( U † ) T M U † ⇓ U T M D+M U = M C. Giunti , Neutrino Mixing and Oscillations − 44

  32.   ν eL       ν µL left-handed     ν 1 L       ν τL components  ν L .      = U † N L  ≡ . n L ≡ N L ≡ = U n L     . ν c    ν c of fields with  s 1 R  R   ν (3+ N ) L . .   definite mass .   ν c L D+M = − 1 L M D+M N L + H . c . 2 N c s N R 3+ N � = − 1 L M n L + H . c . = − 1 2 n c m k ν c kL ν kL + H . c . 2 k =1   ν 1   .   L = U † N L + U T N c .  = n L + n c n ≡ fields with definite mass are Majorana:   . L  ν 3+ N 3+ N � L D+M = − 1 2 n M n = − 1 m k ν k ν k 2 k =1 C. Giunti , Neutrino Mixing and Oscillations − 45

  33. 3+ N � ν αL = U αk ν kL ( α = e, µ, τ ) k =1 mixing relations: 3+ N � ν c sR = U sk ν kL ( s = s 1 , . . . , s N ) k =1 Sterile neutrino fields ν sR are connected to Active neutrino fields ν αL trough the Massive neutrino fields ν kL ⇓ Active ⇆ Sterile oscillations are possible! ⇓ disappearance of active neutrinos C. Giunti , Neutrino Mixing and Oscillations − 46

  34. Physical Parameters in N × N Mixing Matrix for Majorana Neutrinos N ( N − 1) angles N × N Unitary Mixing Matrix ⇒ N 2 parameters 2 N ( N +1) phases 2 not rephasable � ↓ † = 2 j CC Weak Charged Current: ℓ αL γ ρ U αk ν kL ρ ↑ α,k rephasable Lagrangian is not invariant under global phase transformations ν k → e iφ k ν k kT C − 1 ν kL → e 2 iφ k ν T kT C − 1 ν kL Majorana mass term: ν T Lepton number is not conserved! only N phases in the mixing matrix can be eliminated rephasing the charged lepton fields � † → 2 j CC ℓ αL e − iθ α γ ρ U αk ν kL ρ ↑ α,k N C. Giunti , Neutrino Mixing and Oscillations − 47

  35. � � − N = N ( N − 1) N ( N + 1) same number as number of physical phases: mixing angles 2 2 N ( N − 1) = ( N − 1) ( N − 2) + N − 1 � �� � 2 2 � �� � “Majorana phases” “Dirac phases”   1 0 ··· 0 0 e iλ 21 ··· 0 U αk = U (D) αk e iλ k 1 , U = U (D) D ( λ ) ,   λ 11 = 0 = ⇒ D ( λ ) = . . . ... . . . . . . overall phase ··· e iλN 1 0 0 C. Giunti , Neutrino Mixing and Oscillations − 48

  36. Three Light Majorana Neutrinos ( ⇐ See-Saw) N = 3 = ⇒ 3 Mixing Angles 1 Dirac Phase 2 Majorana Phases standard parameterization (convenient) ( c ij ≡ cos ϑ ij , s ij ≡ sin ϑ ij ) U = R 23 W 13 R 12 D ( λ ) 0 1 0 1 0 1 0 1 0 s 13 e − iδ 13 1 0 0 c 13 c 12 s 12 0 1 0 0 B C B C B C B C 0 e iλ 21 = 0 c 23 s 23 0 1 0 − s 12 c 12 0 0 B C B C B C B C @ A @ A @ A @ A − s 13 e iδ 13 0 e iλ 31 0 − s 23 c 23 c 13 0 0 1 0 0 0 1 0 1 s 13 e − iδ 13 c 12 c 13 s 12 c 13 1 0 0 B C B C − s 12 c 23 − c 12 s 23 s 13 e iδ 13 c 12 c 23 − s 12 s 23 s 13 e iδ 13 0 e iλ 21 = s 23 c 13 0 B C B C @ A @ A s 12 s 23 − c 12 c 23 s 13 e iδ 13 − c 12 s 23 − s 12 c 23 s 13 e iδ 13 e iλ 31 c 23 c 13 0 0 Majorana phases are relevant only in processes involving Lepton number violation ββ 0 ν , ν α ⇆ ¯ ν β , . . . these processes are suppressed by smallness of neutrino masses because of helicity mismatch in the limit of negligible neutrino massess Dirac = Majorana! C. Giunti , Neutrino Mixing and Oscillations − 49

  37. CP invariance → i γ 0 N c → i γ 0 N L CP CP CP invariance of L CC N c ⇒ − − ⇒ − − N L I L L L D+M = − 1 L M D+M N L − 1 2 N L M D+M ∗ N c ( M D+M T = M D+M ) 2 N c L → − 1 L − 1 L M D+M ∗ N L 2 N L M D+M N c CP L D+M 2 N c − − M D+M = M D+M ∗ CP invariance ⇐ ⇒ real! n L = U † N L U = O D N L = U n L D kj = D k δ kj L = U ∗ n c L = U T N c O T O = I N c n c D 2 k = ± 1 L L n L = U † N L → i U † γ 0 N c L = i U † U ∗ γ 0 n c CP − − η k = CP parity of ν k � �� � L η � � ∗ = i � � ∗ = i D 2 η = i U † U ∗ = i U T U D O T O D η k = iD 2 k = ± i important: relative CP parities η kj ≡ η k /η j = D 2 k /D 2 j = ± 1 C. Giunti , Neutrino Mixing and Oscillations − 50

  38. standard parameterization of CP-invariant Majorana mixing matrix U = R 23 R 13 R 12 D ( λ ) 0 1 0 1 0 1 0 1 1 0 0 c 13 0 s 13 c 12 s 12 0 1 0 0 B C B C B C B C 0 e iλ 21 = 0 c 23 s 23 0 1 0 − s 12 c 12 0 0 B C B C B C B C @ A @ A @ A @ A e iλ 31 0 − s 23 c 23 − s 13 0 c 13 0 0 1 0 0 0 1 0 1 c 12 c 13 s 12 c 13 s 13 1 0 0 B C B C 0 e iλ 21 = − s 12 c 23 − c 12 s 23 s 13 c 12 c 23 − s 12 s 23 s 13 s 23 c 13 0 B C B C @ A @ A e iλ 31 s 12 s 23 − c 12 c 23 s 13 − c 12 s 23 − s 12 c 23 s 13 c 23 c 13 0 0 equal or opposite λ kj = 0 , π η kj = e 2 iλ kj = ± 1 ⇐ ⇒ 2 CP parities if λ kj = π e iλ kj = i ⇒ ⇒ = = complex U ! 2 C. Giunti , Neutrino Mixing and Oscillations − 51

  39. d u W � e U ek Neutrinoless Double- β Decay ( ββ 0 ν ): ∆ L = 2 m � k k N ( A, Z ) → N ( A, Z + 2) + e − + e − Γ ββ 0 ν ∝ |� m �| 2 U ek � e � � � � effective � W � � U 2 d u |� m �| = ek m k � � Majorana � � mass k  76 Ge → 76 Se + e − + e −  100 Mo → 100 Ru + e − + e − examples: 130 Te → 130 Xe + e − + e −  136 Xe → 136 Ba + e − + e − d u W � e Two-Neutrino Double- β Decay ( ∆ L = 0 ) � � e � � e � N ( A, Z ) → N ( A, Z ) + e − + e − + ¯ e ν e + ¯ ν e W d u second order weak interaction process C. Giunti , Neutrino Mixing and Oscillations − 52 1 1

  40. Im h m i 2 2 i� 31 j U j e m e 3 3 h m i 2 2 i� 21 j U j e m e 2 2 2 j U j m e 1 1 Re h m i � � � � � � � U 2 |� m �| = ek m k � � � � k complex U ek ⇒ possible cancellations among m 1 , m 2 , m 3 contributions! � � � | U e 1 | 2 m 1 + | U e 2 | 2 e 2 iλ 21 m 2 + | U e 3 | 2 e 2 iλ 31 m 3 � |� m �| = λ kj = 0 , π e 2 iλ kj = η kj = ± 1 ⇒ ⇒ conserved CP = = 2 e 2 iλ kj = − 1 opposite CP parities of ν k and ν j = ⇒ = ⇒ maximal cancellation! C. Giunti , Neutrino Mixing and Oscillations − 53 1

  41. EXAMPLE: 2 MASSIVE NEUTRINOS � � � | U e 1 | 2 m 1 + | U e 2 | 2 e 2 iλ 21 m 2 � |� m �| = � � λ 21 = π � | U 2 � | U 2 ⇒ |� m �| = e 1 | m 1 − e 2 | m 2 = 2 ↑ conserved CP cancellation opposite CP parities if m 1 ≃ m 2 and | U 2 e 1 | ≃ | U 2 e 2 | ≃ 1 / 2 = ⇒ |� m �| can be extremely small! Dirac neutrino: perfect cancellation   equal mass   1 Dirac neutrino ≡ 2 Majorana neutrinos with maximal mixing    opposite CP parities   m 1 = m 2   | U e 1 | 2 = | U e 2 | 2 = 1 / 2 = ⇒ |� m �| = 0    λ 21 = π/ 2 C. Giunti , Neutrino Mixing and Oscillations − 54

  42. See-Saw Mechanism   ( M D ) T  0 M L = 0 = ⇒ M D+M =  M D M R eigenvalues of M R ≫ eigenvalues of M D M D+M is block-diagonalized ⇒ =    M light 0 W † ≃ W − 1 W T M D+M W ≃  0 M heavy corrections ∼ ( M R ) − 1 M D   † ) − 1 M D 2( M D ) † ( M R ) †− 1  ( M D ) † ( M R ( M R ) W = 1 − 1  ( M R ) − 1 M D ( M D ) † ( M R ) †− 1 2 − 2( M R ) − 1 M D M light ≃ − ( M D ) T ( M R ) − 1 M D M heavy ≃ M R C. Giunti , Neutrino Mixing and Oscillations − 55

  43. M light ≃ − ( M D ) T ( M R ) − 1 M D M R = M I ⇒ M = high energy scale = QUADRATIC SEE-SAW M light ≃ − ( M D ) T M D m k ∼ ( m f k ) 2 = ⇒ M M 1 ) 2 : ( m f 2 ) 2 : ( m f m 1 : m 2 : m 3 ∼ ( m f 3 ) 2 M R = M ⇒ M D = scale of M D M D = LINEAR SEE-SAW M D M light ≃ −M D m k ∼ M D M m f M M D ⇒ = k m 1 : m 2 : m 3 ∼ m f 1 : m f 2 : m f 3 C. Giunti , Neutrino Mixing and Oscillations − 56

  44. Summary of Part 1: Neutrino Masses and Mixing in the “Standard Model” neutrino are massless by construction implementation of “two-component theory” “Standard Model” can be naturally extended to include neutrino masses add ν eR , ν µR , ν τR surprise: Majorana Masses known natural explanations of smallness of ν masses See-Saw Mechanism, Effective Lagrangian ⇓ Majorana ν Masses, New High Energy Scale ⇓ Neutrino Masses are powerful window on New Physics Beyond Standard Model C. Giunti , Neutrino Mixing and Oscillations − 57

  45. Part 2: Neutrino Oscillations in Vacuum and in Matter C. Giunti , Neutrino Mixing and Oscillations − 58

  46. Detectable Neutrinos are Extremely Relativistic Only neutrinos with energy larger than some fraction of MeV are detectable! Charged-Current Processes: Threshold ☼ ν e + 37 Cl → 37 Ar + e − E th = 0 . 81 MeV ν + A → B + C ☼ ν e + 71 Ga → 71 Ge + e − E th = 0 . 233 MeV ⇓ s = 2 Em A + m 2 A ≥ ( m B + m C ) 2 ν e + p → n + e + ♁ ¯ E th = 1 . 8 MeV ⇓ ♁ ν µ + n → p + µ − E th = 110 MeV E th = ( m B + m C ) 2 − m A m 2 ♁ ν µ + e − → ν e + µ − µ 2 m A 2 E th ≃ 2 m e = 10 . 9 GeV Elastic Scattering Processes: Cross Section ∝ Energy ☼ ν + e − → ν + e − σ 0 ∼ 10 − 44 cm 2 σ ( E ) ∼ σ 0 E/m e Background ⇒ E th ≃ 5 MeV (SK, SNO) Laboratory and Astrophysical Limits = ⇒ m ν � 1 eV C. Giunti , Neutrino Mixing and Oscillations − 59

  47. π + → µ + + ν µ π − → µ − + ¯ Easy Example of Neutrino Production: ν µ E 2 k = p 2 k + m 2 two-body decay = ⇒ fixed kinematics k  � � 2 � � 1 − m 2 1 + m 2  k = m 2 − m 2 + m 4  µ µ  p 2 π k k   m 2 m 2 4 m 2 4 2 π π π π at rest: � � 2 � �  1 − m 2 1 − m 2 k = m 2 + m 2 + m 4   µ µ π E 2 k k   m 2 m 2 4 m 2 4 2 π π π � � 1 − m 2 0 th order: m k = 0 ⇒ p k = E k = E = m π µ ≃ 30 MeV m 2 2 π � � 1 − m 2 E k ≃ E + ξ m 2 p k ≃ E − (1 − ξ ) m 2 ξ = 1 1 st order: µ k k ≃ 0 . 2 m 2 2 E 2 E 2 π � � general! C. Giunti , Neutrino Mixing and Oscillations − 60

  48. Neutrino Oscillations in Vacuum: Plane Wave Model � � Neutrino Production: j CC = 2 ν αL γ ρ ℓ αL ν αL = U αk ν kL Fields ρ α = e,µ,τ k � X X U ∗ U αk U ∗ U αk U ∗ | ν α � = αk | ν k � States � 0 | ν αL | ν β � = βj � 0 | ν kL | ν j � ∝ βk = δ αβ | {z } k,j k k ∝ δ kj � αk e − iE k t + ip k x | ν k � | ν k ( x, t ) � = e − iE k t + ip k x | ν k � U ∗ ⇒ | ν α ( x, t ) � = = k ↑ �� � � � | ν k � = U βk | ν β � U ∗ αk e − iE k t + ip k x U βk | ν α ( x, t ) � = | ν β � β = e,µ,τ β = e,µ,τ k � �� � A να → νβ ( x,t ) Transition Probability � � 2 � � � � � � 2 = � � P ν α → ν β ( x, t ) = |� ν β | ν α ( x, t ) �| 2 = � A ν α → ν β ( x, t ) U ∗ αk e − iE k t + ip k x U βk � � � � k C. Giunti , Neutrino Mixing and Oscillations − 61

  49. ultrarelativistic neutrinos = ⇒ t ≃ x = L source-detector distance E k t − p k x ≃ ( E k − p k ) L = E 2 k − p 2 m 2 L ≃ m 2 k k k L = 2 E L E k + p k E k + p k � � 2 � � � � � k L/ 2 E U βk αk e − im 2 U ∗ P ν α → ν β ( L, E ) = � � � � k � | U αk | 2 | U βk | 2 = ⇐ constant term k � � ∆ m 2 � kj L U ∗ αk U βk U αj U ∗ − i ⇐ oscillating term + 2Re βj exp 2 E k>j � coherence ∆ m 2 kj ≡ m 2 k − m 2 j C. Giunti , Neutrino Mixing and Oscillations − 62

  50. NEUTRINOS AND ANTINEUTRINOS ν CP = γ 0 C ν T = −C ν ∗ antineutrinos are described by CP-conjugated fields: ⇒ C = Particle ⇆ Antiparticle ⇒ P = Left-Handed ⇆ Righ-Handed � � CP → ν CP U ∗ αk ν CP Fields: ν αL = U αk ν kL − − αL = kL k k � � CP U ∗ States: | ν α � = αk | ν k � − − → | ¯ ν α � = U αk | ¯ ν k � k k U ∗ NEUTRINOS U ANTINEUTRINOS ⇆ � � � � ∆ m 2 kj L | U αk | 2 | U βk | 2 + 2Re U ∗ αk U βk U αj U ∗ P ν α → ν β ( L, E ) = βj exp − i 2 E k k>j � � ∆ m 2 � � kj L | U αk | 2 | U βk | 2 + 2Re U αk U ∗ βk U ∗ P ¯ ν β ( L, E ) = αj U βj exp − i ν α → ¯ 2 E k k>j C. Giunti , Neutrino Mixing and Oscillations − 63

  51. CPT Symmetry CPT P ν α → ν β − − − → P ¯ ν β → ¯ ν α A CPT = P ν α → ν β − P ¯ CPT Asymmetries: ν β → ¯ ν α αβ A CPT ⇒ Local Quantum Field Theory = = 0 CPT Symmetry αβ � � � � ∆ m 2 kj L | U αk | 2 | U βk | 2 + 2Re U ∗ αk U βk U αj U ∗ indeed, P ν α → ν β ( L, E ) = βj exp − i 2 E k k>j U ∗ is invariant under CPT: U ⇆ α ⇆ β P ν α → ν β = P ¯ ν β → ¯ ν α in particular P ν α → ν α = P ¯ (solar ν e , reactor ¯ ν e , accelerator ν µ ) ν α → ¯ ν α C. Giunti , Neutrino Mixing and Oscillations − 64

  52. CP Symmetry CP − − → P ν α → ν β P ¯ ν α → ¯ ν β A CP A CP αβ = − A CP CP Asymmetries: αβ = P ν α → ν β − P ¯ CPT ⇒ ν α → ¯ ν β βα ∆ m 2 ∆ m 2 ! ! kj L kj L X X A CP U ∗ αk U βk U αj U ∗ U αk U ∗ βk U ∗ − i − 2Re − i αβ ( L, E ) = 2Re βj exp αj U βj exp 2 E 2 E k>j k>j � � � ∆ m 2 kj L A CP αβ ( L, E ) = 4 J αβ ; kj sin 2 E k>j � � Jarlskog rephasing ( U αk → e iλ α U αk e iη k ) invariants: U ∗ αk U βk U αj U ∗ J αβ ; kj = Im βj violation of CP symmetry depends only on Dirac phases (three neutrinos: J αβ ; kj = ± c 12 s 12 c 23 s 23 c 2 13 s 13 sin δ 13 ) � � A CP = 0 = ⇒ observation of CP violation needs measurement of oscillations αβ C. Giunti , Neutrino Mixing and Oscillations − 65

  53. T Symmetry T P ν α → ν β − → P ν β → ν α A T T Asymmetries: αβ = P ν α → ν β − P ν β → ν α 0 = A CPT ⇒ = P ν α → ν β − P ¯ CPT = ν β → ¯ ν α αβ = P ν α → ν β − P ν β → ν α + P ν β → ν α − P ¯ ν β → ¯ ν α = A T αβ + A CP βα = A T αβ − A CP A T αβ = A CP ⇒ = αβ αβ � � � ∆ m 2 kj L A T αβ ( L, E ) = 4 J αβ ; kj sin 2 E k>j violation of T symmetry depends only on Dirac phases � � A T ⇒ = 0 = observation of T violation needs measurement of oscillations αβ C. Giunti , Neutrino Mixing and Oscillations − 66

  54. Two Generations ( k = 1 , 2 )    cos ϑ sin ϑ ∆ m 2 ≡ ∆ m 2 21 ≡ m 2 2 − m 2  U = 1 − sin ϑ cos ϑ � ∆ m 2 L � P ν α → ν β ( L, E ) = sin 2 2 ϑ sin 2 Transition Probability ( α � = β ) : 4 E Survival Probability ( α = β ) : P ν α → ν α ( L, E ) = 1 − P ν α → ν β ( L, E ) � P ν α → ν β � = 1 2 sin 2 2 ϑ Averaged Transition Probability: C. Giunti , Neutrino Mixing and Oscillations − 67

  55. TYPES OF EXPERIMENTS observable if „ ∆ m 2 L « Two-Neutrino P ν α → ν β ( L, E ) = sin 2 2 ϑ sin 2 ⇒ ∆ m 2 L 4 E Mixing � 1 4 E SBL (high statistics) Reactor SBL: L ∼ 10 m , E ∼ 1 MeV ∆ m 2 � 0 . 1 eV 2 L/E � 1 eV − 2 ⇒ Accelerator SBL: L ∼ 1 km , E � 1 GeV = ATM & LBL Reactor LBL: L ∼ 1 km , E ∼ 1 MeV CHOOZ, PALO VERDE L/E � 10 4 eV − 2 Accelerator LBL: L ∼ 10 3 km , E � 1 GeV K2K, MINOS, CNGS L ∼ 10 2 − 10 4 km , E ∼ 0 . 1 − 10 2 GeV ⇓ Atmospheric: ∆ m 2 � 10 − 4 eV 2 Kamiokande, IMB, Super-Kamiokande, Soudan, MACRO L ∼ 10 8 km , E ∼ 0 . 1 − 10 MeV SUN Homestake, Kamiokande, GALLEX, SAGE, L E ∼ 10 11 eV − 2 ∆ m 2 � 10 − 11 eV 2 ⇒ = Super-Kamiokande, GNO, SNO 10 − 8 eV 2 � ∆ m 2 � 10 − 4 eV 2 10 − 4 � sin 2 2 ϑ � 1 Matter Effect (MSW) = ⇒ C. Giunti , Neutrino Mixing and Oscillations − 68

  56. MSW effect (resonant transitions in matter) � U ∗ a flavor neutrino ν α with momentum p is described by | ν α ( p ) � = αk | ν k ( p ) � k � p 2 + m 2 H 0 | ν k ( p ) � = E k | ν k ( p ) � E k = k H = H 0 + H I H I | ν α ( p ) � = V α | ν α ( p ) � in matter V α = effective potential due to coherent interactions with medium forward elastic CC and NC scattering C. Giunti , Neutrino Mixing and Oscillations − 69

  57. � � e � ; � ; � � ; � ; � e e � � e � � EFFECTIVE POTENTIAL IN MATTER W Z � � � e � e ; p; n e ; p; n e √ √ 2 V ( e − ) = − V ( p ) V NC = V ( n ) ⇒ NC = − V CC = 2 G F N e 2 G F N n NC NC ⇒ V e − V µ = V CC V e = V CC + V NC V µ = V τ = V NC (common phase) = V CC = − V CC V NC = − V NC antineutrinos: C. Giunti , Neutrino Mixing and Oscillations − 70

  58. i d Schr¨ odinger picture: d t | ν α ( p, t ) � = H| ν α ( p, t ) � , | ν α ( p, 0) � = | ν α ( p ) � ϕ αβ ( p, t ) = � ν β ( p ) | ν α ( p, t ) � , flavor transition amplitudes: ϕ αβ ( p, 0) = δ αβ i d d t ϕ αβ ( p, t ) = � ν β ( p ) |H| ν α ( p, t ) � = � ν β ( p ) |H 0 | ν α ( p, t ) � + � ν β ( p ) |H I | ν α ( p, t ) � � � ν β ( p ) |H 0 | ν α ( p, t ) � = � ν β ( p ) |H 0 | ν ρ ( p ) � � ν ρ ( p ) | ν α ( p, t ) � � �� � ρ ϕ αρ ( p, t ) � � U ∗ U βk � ν k ( p ) |H 0 | ν j ( p ) � = ρj ϕ αρ ( p, t ) � �� � ρ k,j δ kj E k � � ν β ( p ) |H I | ν α ( p, t ) � = � ν β ( p ) |H I | ν ρ ( p ) � ϕ αρ ( p, t ) = V β ϕ αβ ( p, t ) � �� � ρ δ βρ V β �� � � i d U βk E k U ∗ d t ϕ αβ = ρk + δ βρ V β ϕ αρ ρ k C. Giunti , Neutrino Mixing and Oscillations − 71

  59. E k = p + m 2 k ultrarelativistic neutrinos: E = p t = x 2 E V e = V CC + V NC V µ = V τ = V NC �� � � m 2 i d 2 E U ∗ k d x ϕ αβ ( p, x ) = ( p + V NC ) ϕ αβ ( p, x ) + U βk ρk + δ βe δ ρe V CC ϕ αρ ( p, x ) ρ k R x 0 V NC ( x ′ ) d x ′ ψ αβ ( p, x ) = ϕ αβ ( p, x ) e ipx + i ⇓ 0 V NC ( x ′ ) d x ′ � � R x i d − p − V NC + i d d x ψ αβ = e ipx + i ϕ αβ d x �� � � m 2 i d 2 E U ∗ k d x ψ αβ = U βk ρk + δ βe δ ρe V CC ψ αρ ρ k P ν α → ν β = | ϕ αβ | 2 = | ψ αβ | 2 C. Giunti , Neutrino Mixing and Oscillations − 72

  60. evolution of flavor transition amplitudes in matrix form � � i d d x Ψ α = 1 U M 2 U † + A Ψ α 2 E � � � ψ αe � � A CC 0 0 � m 2 0 0 1 M 2 = A CC = 2 EV CC Ψ α = A = m 2 √ ψ αµ 0 0 0 0 0 2 = 2 2 EG F N e 0 0 0 ψ ατ m 2 0 0 3 effective effective VAC = U M 2 U † U M 2 U † + 2 E V matter M 2 = M 2 mass-squared mass-squared − − − − → MAT matrix matrix ↑ in vacuum in matter potential due to coherent forward elastic scattering � cos ϑ � sin ϑ simplest case: ν e → ν µ transitions with U = (two-neutrino mixing) − sin ϑ cos ϑ � � � � = 1 + 1 cos 2 ϑm 2 1 +sin 2 ϑm 2 2 cos ϑ sin ϑ ( m 2 2 − m 2 1 ) U M 2 U † = − ∆ m 2 cos2 ϑ ∆ m 2 sin2 ϑ 2 Σ m 2 ∆ m 2 sin2 ϑ ∆ m 2 cos2 ϑ cos ϑ sin ϑ ( m 2 2 − m 2 1 ) sin 2 ϑm 2 1 +cos 2 ϑm 2 2 2 ↑ irrelevant common phase Σ m 2 ≡ m 2 ∆ m 2 ≡ m 2 1 + m 2 2 − m 2 2 1 C. Giunti , Neutrino Mixing and Oscillations − 73

  61.        − ∆ m 2 cos2 ϑ + 2 A CC ∆ m 2 sin2 ϑ  ψ ee  ψ ee i d  = 1   ∆ m 2 sin2 ϑ ∆ m 2 cos2 ϑ d x 4 E ψ eµ ψ eµ      ψ ee (0)  1  =  ⇒ initial ν e = ψ eµ (0) 0 P ν e → ν µ ( x ) = | ψ eµ ( x ) | 2 P ν e → ν e ( x ) = | ψ ee ( x ) | 2 = 1 − P ν e → ν µ ( x ) tan 2 ϑ ⇒ Effective Mixing Angle in Matter: Diagonalization = tan 2 ϑ M = A CC 1 − ∆ m 2 cos 2 ϑ e = ∆ m 2 cos 2 ϑ CC = ∆ m 2 cos 2 A R N R ⇒ √ Resonance ( ϑ M = π/ 4 ): ϑ = 2 2 EG F � ϑ − A CC ) 2 + (∆ m 2 sin 2 (∆ m 2 cos 2 ϑ ) 2 ∆ m 2 Effective Squared-Mass Difference: M = C. Giunti , Neutrino Mixing and Oscillations − 74

  62. R N = N A e 90 � ' � � ' � e 2 � 1 80 70 60 50 40 30 � 4 # = 10 20 10 � ' � � ' � e 1 � 2 ν e = cos ϑ M ν 1 + sin ϑ M ν 2 0 0 20 40 60 80 100 M � 3 # N = N ( m ) e A ν µ = − sin ϑ M ν 1 + cos ϑ M ν 2 R N = N A e 14 � 2 � e 12 tan 2 ϑ 10 tan 2 ϑ M = A CC 1 − � � 8 � 1 ∆ m 2 cos 2 ϑ � � 2 � 6 4 � 1 2 » ` 2 � 6 � 3 ) � � m = 7 � 10 eV , # = 10 2 e 2 ∆ m 2 cos 2 ´ 2 ∆ m 2 eV ϑ − A CC M = 0 � 6 0 20 40 60 80 100 – 1 / 2 (10 � 3 ` ∆ m 2 sin 2 ´ 2 N = N ( m ) e A + ϑ M 2 � m C. Giunti , Neutrino Mixing and Oscillations − 75

  63.        ψ ee  cos ϑ M sin ϑ M  ψ 1  =   − sin ϑ M ψ eµ cos ϑ M ψ 2       �   � − i d ϑ M 0  − ∆ m 2  ψ 1 0  ψ 1 i d A CC + 1   M d x  =  +    i d ϑ M d x 4 E 4 E ∆ m 2 ψ 2 0 ψ 2 0 M d x ↑ irrelevant common phase ↑ maximum near resonance          cos ϑ 0 − sin ϑ 0  cos ϑ 0  ψ 1 (0)  1 M M M  =   =  sin ϑ 0 cos ϑ 0 sin ϑ 0 ψ 2 (0) 0 M M M Z x R Z x R » „ « „ « – ∆ m 2 M ( x ′ ) ∆ m 2 M ( x ′ ) cos ϑ 0 d x ′ A R 11 + sin ϑ 0 d x ′ A R ψ 1 ( x ) ≃ M exp i M exp − i 21 4 E 4 E 0 0 Z x „ « ∆ m 2 M ( x ′ ) d x ′ × exp i 4 E x R Z x R Z x R » „ « „ « – ∆ m 2 ∆ m 2 M ( x ′ ) M ( x ′ ) cos ϑ 0 d x ′ A R 12 + sin ϑ 0 d x ′ A R ψ 2 ( x ) ≃ − i M exp i M exp 22 4 E 4 E 0 0 Z x „ « ∆ m 2 M ( x ′ ) d x ′ × exp − i 4 E x R C. Giunti , Neutrino Mixing and Oscillations − 76

  64. ψ ee ( x ) = cos ϑ x M ψ 1 ( x ) + sin ϑ x M ψ 2 ( x ) neglect phases (averaged over energy spectrum) 11 | 2 + cos 2 ϑ x P ν e → ν e ( x ) = |� ψ ee ( x ) �| = cos 2 ϑ x M cos 2 ϑ 0 M |A R M sin 2 ϑ 0 M |A R 21 | 2 12 | 2 + sin 2 ϑ x + sin 2 ϑ x M cos 2 ϑ 0 M |A R M sin 2 ϑ 0 M |A R 22 | 2 11 | 2 = |A R 22 | 2 = 1 − P c 12 | 2 = |A R 21 | 2 = P c |A R |A R crossing probability � 1 � P ν e → ν e ( x ) = 1 cos2 ϑ 0 M cos2 ϑ x 2 + 2 − P c [Parke, PRL 57 (1986) 1275] M C. Giunti , Neutrino Mixing and Oscillations − 77

  65. CROSSING PROBABILITY � � � � − π − π F P c = exp 2 γF − exp 2 γ sin 2 ϑ � � [Kuo, Pantaleone, PRD 39 (1989) 1930] − π F 1 − exp 2 γ sin 2 ϑ � ∆ m 2 sin 2 2 ϑ γ = ∆ m 2 � M / 2 E � adiabaticity parameter: = � � � � d ln A CC � 2 | d ϑ M / d x | 2 E cos2 ϑ R d x R A ∝ x F = 1 (Landau-Zener approximation) [Parke, PRL 57 (1986) 1275] � � 2 / � � 1 − tan 2 ϑ 1 + tan 2 ϑ A ∝ 1 /x F = [Kuo, Pantaleone, PRD 39 (1989) 1930] F = 1 − tan 2 ϑ A ∝ exp ( − x ) [Pizzochero, PRD 36 (1987) 2293, Toshev, PLB 196 (1987) 170, Petcov, PLB 200 (1988) 373] [Kuo, Pantaleone, RMP 61 (1989) 937] C. Giunti , Neutrino Mixing and Oscillations − 78

  66. � � − x R ⊙ N e ( x ) ≃ N c N c e = 245 N A / cm 3 SUN: e exp x 0 = x 0 10 . 54 � 1 � ν e → ν e = 1 sun cos2 ϑ 0 2 − P c P 2 + M cos2 ϑ � � � � − π − π F − exp P c = exp 2 γF 2 γ sin 2 ϑ � � − π F 1 − exp 2 γ sin 2 ϑ ∆ m 2 sin 2 2 ϑ � � γ = � d ln A CC � 2 E cos2 ϑ d x R F = 1 − tan 2 ϑ √ A CC = 2 2 EG F N e   numerical | d ln A CC / d x | R for x ≤ 0 . 904 R ⊙ practical prescription: | d ln A CC / d x | R → 18 . 9  for x > 0 . 904 R ⊙ [Lisi et al., PRD 63 (2001) 093002] R ⊙ C. Giunti , Neutrino Mixing and Oscillations − 79

  67. � � � � sun ν 2 → ν e − sin 2 ϑ P earth 1 − 2 P ν e → ν e sun P sun+earth Earth Matter Effect: = P ν e → ν e + ν e → ν e cos2 ϑ [Mikheev, Smirnov, Sov. Phys. Usp. 30 (1987) 759], [Baltz, Weneser, PRD 35 (1987) 528] 14 12 (A) 10 ρ (g/cm 3 ) 8 P earth ν 2 → ν e is usually calculated numerically ap- 6 proximating the Earth density profile with a 4 Data step function. 2 Our approximation 0 (B) 6 Effective massive neutrinos propagate as 5 N e / N A (cm − 3 ) plane waves in regions of constant density. 4 3 Wave functions of flavor neutrinos are joined 2 Data 1 at the boundaries of steps. Our approximation 0 0 1000 2000 3000 4000 5000 6000 r (Km) [Giunti, Kim, Monteno, NP B 521 (1998) 3] C. Giunti , Neutrino Mixing and Oscillations − 80

  68. ∆ m 2 ∼ 5 × 10 − 5 eV 2 , tan 2 ϑ ∼ 0 . 8 LMA (Large Mixing Angle): ∆ m 2 ∼ 7 × 10 − 8 eV 2 , tan 2 ϑ ∼ 0 . 6 LOW (LOW ∆ m 2 ): ∆ m 2 ∼ 5 × 10 − 6 eV 2 , tan 2 ϑ ∼ 10 − 3 SMA (Small Mixing Angle): ∆ m 2 ∼ 10 − 9 eV 2 , tan 2 ϑ ∼ 1 QVO (Quasi-Vacuum Oscillations): ∆ m 2 � 5 × 10 − 10 eV 2 , tan 2 ϑ ∼ 1 VAC (VACuum oscillations): 10 4 - LMA SMA 5 10 - 6 10 - ∆ m (eV ) 2 2 LOW 10 - 7 10 - 8 10 - 9 VAC 10 - 10 0.001 0.01 0.1 1 10 tan 2 θ [de Gouvea, Friedland, Murayama, PLB 490 (2000) 125] [Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015] C. Giunti , Neutrino Mixing and Oscillations − 81

  69. 90 80 70 60 ∆ m 2 = 5 × 10 − 6 eV 2 50 solid line: 40 tan 2 ϑ = 5 × 10 − 4 (typical SMA) 30 20 ∆ m 2 = 7 × 10 − 5 eV 2 dashed line: M 10 # tan 2 ϑ = 0 . 4 0 (typical LMA) � 4 � 3 � 2 � 1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 � 3 N = N [ m ℄ A ∆ m 2 = 8 × 10 − 8 eV 2 dash-dotted line: � 2 � 3 10 10 tan 2 ϑ = 0 . 7 � 4 10 (typical LOW) � 3 10 � 5 10 � 5 10 � 6 10 � 4 10 � 7 10 � 5 10 � 8 10 � 9 ℄ ℄ ℄ 10 2 2 2 [eV [eV � 6 [eV 10 � 6 � 10 10 10 2 2 2 m m m � 7 � 11 10 10 0 1 0 1 2 3 4 � 4 � 3 � 2 � 1 0 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 � 3 � 3 � 3 N = N [ m ℄ N = N [ m ℄ N = N [ m ℄ A A A typical SMA typical LMA typical LOW C. Giunti , Neutrino Mixing and Oscillations − 82

  70. [Bahcall, Krastev, Smirnov, PRD 58 (1998) 096016] [Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015] ∆ m 2 = 5 . 0 × 10 − 6 eV2 sin22 ϑ = 3 . 5 × 10 − 3 ∆ m 2 = 4 . 2 × 10 − 5 eV2 tan2 ϑ = 0 . 26 SMA: LMA: ∆ m 2 = 1 . 6 × 10 − 5 eV2 ∆ m 2 = 5 . 2 × 10 − 6 eV2 tan2 ϑ = 5 . 5 × 10 − 4 sin22 ϑ = 0 . 57 LMA: SMA: ∆ m 2 = 7 . 9 × 10 − 8 eV2 sin22 ϑ = 0 . 95 ∆ m 2 = 7 . 6 × 10 − 8 eV2 tan2 ϑ = 0 . 72 LOW: LOW: Just So 2 : ∆ m 2 = 5 . 5 × 10 − 12 eV2 tan2 ϑ = 1 . 0 ∆ m 2 = 1 . 4 × 10 − 10 eV2 tan2 ϑ = 0 . 38 VAC: C. Giunti , Neutrino Mixing and Oscillations − 83

  71. IN NEUTRINO OSCILLATIONS DIRAC ∼ MAJORANA � � d ν α d t = 1 UM 2 U † + 2 EV Evolution of Amplitudes: αβ ν β 2 E   U (D) Dirac: difference: U (M) = U (D) D ( λ )  Majorana:   1 0 ··· 0 0 e iλ 21 ··· 0 D † = D − 1   D ( λ ) = . . . ⇒ ... . . . . . . ··· e iλN 1 0 0   m 2 0 ··· 0 1 m 2 0 2 ··· 0   M 2 = DM 2 = M 2 D DM 2 D † = M 2 ⇒ ⇒ = =   . . . . ... . . . . . ··· m 2 0 0 N U (M) M 2 ( U (M) ) † = U (D) DM 2 D † ( U (D) ) † = U (D) M 2 ( U (D) ) † C. Giunti , Neutrino Mixing and Oscillations − 84

  72. 1 AVERAGE OVER ENERGY SPECTRUM � ∆ m 2 L � � � ∆ m 2 L �� 0.8 = 1 P ν α → ν β ( L, E ) = sin 2 2 ϑ sin 2 2 sin 2 2 ϑ 1 − cos ( α � = β ) 0.6 4 E 2 E 0.4 0.2 0 � ! � 100 1000 10000 100000 � L (km) � P ∆ m 2 = 10 − 3 eV sin 2 2 ϑ = 1 � E � = 1 GeV ∆ E = 0 . 2 GeV � � ∆ m 2 L � � � � P ν α → ν β ( L, E ) � = 1 2 sin 2 2 ϑ 1 − cos φ ( E ) d E ( α � = β ) 2 E C. Giunti , Neutrino Mixing and Oscillations − 85 1

  73. � � ∆ m 2 L � � � � P ν α → ν β ( L, E ) � = 1 2 sin 2 2 ϑ 1 − ( α � = β ) cos φ ( E ) d E 2 E 2 P max 1 sin 2 2 ϑ ≤ ν α → ν β � P ν α → ν β ( L, E ) � ≤ P max ⇒ experiment: = � � ∆ m 2 L � ν α → ν β 0.8 1 − cos φ ( E ) d E EX CLUDED REGION 2 E 0.6 � 1 0.4 10 0.2 0 2 # � 4 � 3 � 2 � 1 10 10 10 10 2 2 − − − − − → sin � m (eV) � 2 rotate REGION 10 and mirror (eV) 2 CLUDED � m 1 � 3 10 EX � 4 10 0 0.2 0.4 0.6 0.8 1 sin 2 # 2 C. Giunti , Neutrino Mixing and Oscillations − 86 1

  74. Summary of Part 2: Neutrino Oscillations in Vacuum and in Matter detectable neutrinos are extremely relativistic ⇓ ( ∆ m 2 standard expression for the neutrino oscillation probabilities kj , U αk ) Neutrino Oscillations can test CPT, CP, T symmetries Matter Effects are important for Solar neutrinos and VLBL experiments in Neutrino Oscillations Dirac ∼ Majorana average over energy spectrum ⇓ constant flavor changing probability C. Giunti , Neutrino Mixing and Oscillations − 87

  75. Part 3: Experimental Results and Theoretical Implications C. Giunti , Neutrino Mixing and Oscillations − 88

  76. Neutrino Fluxes LAMPF = Los Alamos WANF = CERN CNGS = CERN → Gran Sasso [A. Geiser, Rept. Prog. Phys. 63 (2000) 1779] C. Giunti , Neutrino Mixing and Oscillations − 89

  77. SOLAR NEUTRINOS Extreme ultraviolet Imaging Telescope (EIT) 304 ˚ A images of the Sun emission in this spectral line (He II) shows the upper chromosphere at a temperature of about 60,000 K [The Solar and Heliospheric Observatory (SOHO), http://sohowww.nascom.nasa.gov/] C. Giunti , Neutrino Mixing and Oscillations − 90

  78. 2 + � 2 ( pp ) p + p ! H + e + � p + e + p ! H + � ( pep ) e e X � X � X � X � 99.6% X � 0.4% X � X � X Standard Solar Model (SSM) � X � X � X � X � ? 2 3 H + p ! He + � pp and CNO cycles 12 13 13 13 + 13 - � X C + p ! N + � N ! C + e + � ( N) � X e � X � X � X � X � X � X � X 6 � X � X � X � X � 5 4 p + 2 e − → 4 He + 2 ν e + 26 . 731 MeV � X � X 85% 2 � 10 % ? � X �� - � � X X 15 12 4 13 14 ? N + p ! C + He C + p ! N + � CN ? ? 6 �� � 3 3 4 3 4 + 6 He + He ! He + 2 p He + p ! He + e + � e 99 : 9% ? 15% ? ( hep ) 15 pp I 15 15 + � 14 15 ( O) O ! N + e + � N + p ! O + � e 3 4 7 He + He ! Be + � 6 0 : 1% ? � P � P � P 15 16 17 14 4 � P N + p ! O + � O + p ! N + He � P � P � P 99.87% 0.13% � P � P 6 ? ? ? 7 7 8 7 � 7 ( Be) 16 17 17 Be + e ! Li + � Be + p ! B + � - 17 17 + e O + p ! F + � F ! O + e + � ( F) e ? ? 7 4 � 8 8 8 + ( B) Li + p ! 2 He B ! Be + e + � e pp I I ? � 8 4 Be ! 2 He pp I I I Current SSM: BP2000 [Bahcall, Pinsonneault, Basu, AJ 555 (2001) 990] [J.N. Bahcall, http://www.sns.ias.edu/˜jnb] C. Giunti , Neutrino Mixing and Oscillations − 91

  79. [J.N. Bahcall, http://www.sns.ias.edu/~jnb ] C. Giunti , Neutrino Mixing and Oscillations − 92

  80. [Castellani, Degl’Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180] C. Giunti , Neutrino Mixing and Oscillations − 93

  81. [Castellani, Degl’Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180] C. Giunti , Neutrino Mixing and Oscillations − 94

  82. [J.N. Bahcall, http://www.sns.ias.edu/~jnb ] predicted versus measured sound speed the rms fractional difference between the calculated and the measured sound speeds is 0.10% for all solar radii between between 0 . 05 R ⊙ and 0 . 95 R ⊙ and is 0.08% for the deep interior region, r < 0 . 25 R ⊙ , in which neutrinos are produced C. Giunti , Neutrino Mixing and Oscillations − 95

  83. HOMESTAKE ν e + 37 Cl → 37 Ar + e − radiochemical experiment [Pontecorvo (1946), Alvarez (1949)] ⇒ Φ µ ≃ 4 m − 2 day − 1 Homestake Gold Mine (South Dakota), 1478 m deep, 4200 m.w.e. = steel tank, 6.1 m diameter, 14.6 m long ( 6 × 10 5 liters) 615 tons of tetrachloroethylene ( C 2 Cl 4 ), 2 . 16 × 10 30 atoms of 37 Cl (133 tons) energy threshold: E Cl ⇒ 8 B , 7 Be , pep , hep , 13 N , 15 O , 17 F th = 0 . 814 MeV = R exp Cl /R SSM ⇒ = 0 . 34 ± 0 . 03 1970–1994, 108 extractions = [APJ 496 (1998) 505] Cl R exp R SSM = 7 . 6 +1 . 3 Cl = 2 . 56 ± 0 . 23 SNU − 1 . 1 SNU Cl 1 SNU = 10 − 36 events atom − 1 s − 1 C. Giunti , Neutrino Mixing and Oscillations − 96

  84. GALLIUM EXPERIMENTS SAGE, GALLEX, GNO ν e + 71 Ga → 71 Ge + e − radiochemical experiments [Kuzmin (1965)] threshold: E Ga ⇒ pp , 7 Be , 8 B , pep , hep , 13 N , 15 O , 17 F th = 0 . 233 MeV = R exp Ga /R SSM ⇒ = 0 . 56 ± 0 . 03 SAGE+GALLEX+GNO = Ga R exp R SSM = 128 +9 Ga = 72 . 4 ± 4 . 7 SNU − 7 SNU Ga C. Giunti , Neutrino Mixing and Oscillations − 97

  85. SAGE: Soviet-American Gallium Experiment Baksan Neutrino Observatory, northern Caucasus, 3.5 km from entrance of horizontal adit ⇒ Φ µ ≃ 2 . 6 m − 2 day − 1 50 tons of metallic 71 Ga , 2000 m deep, 4700 m.w.e. = detector test: 51 Cr Source: R = 0 . 95 +0 . 11 +0 . 06 [PRC 59 (1999) 2246] − 0 . 10 − 0 . 05 R SAGE /R SSM ⇒ = 0 . 54 ± 0 . 05 1990 – 2001 = [astro-ph/0204245] Ga Ga R SAGE = 70 . 8 +6 . 5 R SSM = 128 +9 − 6 . 1 SNU − 7 SNU Ga Ga 400 L+K peaks K peak only 300 Capture rate (SNU) All runs combined 200 100 L K 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Mean extraction time C. Giunti , Neutrino Mixing and Oscillations − 98

  86. GALLium EXperiment (GALLEX) Gran Sasso Underground Laboratory, Italy, overhead shielding: 3300 m.w.e. 30.3 tons of gallium in 101 tons of gallium chloride (GaCl 3 -HCl) solution R GALLEX /R SSM May 1991 – Jan 1997 = ⇒ = 0 . 61 ± 0 . 06 [PLB 477 (1999) 127] Ga Ga Gallium Neutrino Observatory (GNO) continuation of GALLEX, GNO30: 30.3 tons of gallium R GNO /R SSM May 1998 – Jan 2000 = ⇒ = 0 . 51 ± 0 . 08 [PLB 490 (2000) 16] Ga Ga R G+G Ga = 0 . 58 ± 0 . 05 R SSM Ga C. Giunti , Neutrino Mixing and Oscillations − 99

  87. Kamiokande ν + e − → ν + e − water Cherenkov detector Sensitive to ν e , ν µ , ν τ , but σ ( ν e ) ≃ 6 σ ( ν µ,τ ) Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e. 3000 tons of water, 680 tons fiducial volume, 948 PMTs threshold: E Kam ⇒ 8 B , hep ≃ 6 . 75 MeV = th R Kam Jan 1987 – Feb 1995 (2079 days) = ⇒ = 0 . 55 ± 0 . 08 νe [PRL 77 (1996) 1683] R SSM νe Super-Kamiokande continuation of Kamiokande, 50 ktons of water, 22.5 ktons fiducial volume, 11146 PMTs threshold: E Kam ⇒ 8 B , hep ≃ 4 . 75 MeV = th R SK 1996 – 2001 (1496 days) = ⇒ = 0 . 465 ± 0 . 015 νe [SK, PLB 539 (2002) 179] R SSM νe C. Giunti , Neutrino Mixing and Oscillations − 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend