statistical methods
play

Statistical methods Toma Podobnik Oddelek za fiziko, FMF, UNI-LJ , - PowerPoint PPT Presentation

Statistical methods Toma Podobnik Oddelek za fiziko, FMF, UNI-LJ , , Odsek za eksperimentalno fiziko delcev, IJS Contents: I. Prologue, II. Mathematical Preliminaries, III. Frequency Interpretation of Probability Distributions, IV.


  1. Statistical methods Tomaž Podobnik Oddelek za fiziko, FMF, UNI-LJ , , Odsek za eksperimentalno fiziko delcev, IJS

  2. Contents: I. Prologue, II. Mathematical Preliminaries, III. Frequency Interpretation of Probability Distributions, IV. Confidence Intervals, V. Testing of Hypotheses, VI. Inverse Probability Distributions, VII. Interpretation of Inverse Probability Distributions, VIII.Time Series and Dynamical Models. 4/15/2010 2

  3. VI. Inverse Probability Distributions: 1. Direct probability distributions (a refresher), p y ( ), 2. Inverse probability distributions, 3. (Non-informative) Prior probability distributions, ( ) p y 4. Factorization Theorem and consistency factors, 5. Objectivity, j y 6. Consistency factors for location-scale families, 7. Consistency factors in the absence of symmetry. y y y 4/15/2010 3

  4. 1. Direct probability distributions: Definition 21 (Parametric family). The term parametric family stands { } = θ ∈ Pr , θ : for a collection of probability distributions that I V Θ I differ only in the value q of a parameter Q. y p F ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = = = , , ; F x F F x f f x f f x p x p x θ θ θ , , , X I X I X I ( ) ( ) ( ( ) ) ( ) ( ) ( ( ) ) ( ) ( ) ( ( ) ) . = θ θ = θ θ = θ θ | | , | | , | | F F x x F F x x f f x x f f x x p p x x p p x x θ θ θ , , , I I I I I I ( ) ( ) ( ) ( ) ∫ = = θ = θ ∈ Example 1. Pr Pr Pr | | , .  B B B f x dx B θ , X I I I B 4/15/2010 4

  5. Definitions extend without change to random vectors: ( ) ( ) ( ) ( ) ( ) ( ) ; = = = x x | θ , x x | θ , x x | θ F F f f p p X X X I I I ( ) ( ) ( ) ( ) ∫ = = = ∈ . Pr Pr Pr | θ x | θ x ; n  n B B B f d B X , θ I I I B Conditional probability distributions: ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ∫ ∫ = = ≡ > X ( ( , , ) ) , , , , , , | | θ , , | | θ , , | | θ 0 Y Z f f y y z f f y y z f f z f f y y z dy y X X I I I I I I  ( ) , | θ ( ) f y z ⇒ ≡ | , θ ) . I f y z ( I | θ f z I Example 2 (Reparametrization). Let a probability distribution for a ( ) ( ) ( ( ) , ) , = continuous random vector X belong to a family I, g y x x | θ | f f f f X X I I ( ) ( ) ( ) ( ) ≡ ≡ ∂ ∂ ≠ and let and with y s x λ s θ s x , s θ 0 . Then, x θ ( ) ( ) = − − ∂ − 1 1 1 y | λ s ( y ) | s ( λ ) s ( y ) . f f ' y I I 4/15/2010 5

  6. 2. Inverse probability distributions: Definition 1 (Inverse probability distribution). Given a probability Definition 1 (Inverse probability distribution) Given a probability ( ) ( ) Ω → ∈ space (W,S, P ) and a function Θ , X : , x , x , Θ is m n  ,  ( ) , Σ − the inverse probability distribution measurable , and X ~ x | θ f I Θ Θ , i d fi is defined as the image measure of P by the random variable d th i f P b th d i bl ( ) • ≡ − 1 Pr | x Θ , o such that P [ [ ] ] I ( ( ) ) − = ∈ 1 Pr | | x Θ ( ( ) ) , , . m  B P B B I I Distribution and density functions: ( ) ( ) ( ) ( ) . ↔ ↔ x | θ θ | x , x | θ θ | x F F f f I I I I Also: probability distributions that are neither purely direct nor purely p y p y p y inverse. Distribution and density functions of such a distribution: ( ) ( ) . θ , x | x and θ , x | x F f 1 2 1 2 I I 4/15/2010 6

  7. From a mathematical perspective, all probability distributions, be they purely direct, purely inverse, or mixtures of the two, are equivalent. p y , p y , , q Conditional inverse probability distributions: Conditional inverse probability distributions: ( ) ( ) ( ) ∫ = Θ Θ ∃ ≡ > θ θ θ θ θ θ Θ ( , ) , , | x , | x , | x 0 f f f d 1 2 1 2 2 1 2 1 I I I  ( ( ) ) θ θ 1 θ θ , , | | x x ( ( ) ) f f ⇒ θ θ θ θ ≡ | | , x 1 2 2 ) . I I f f ( 1 2 θ I | x f 2 I ( ) , Example 2 (Reparametrization). Suppose there is and let θ | x f ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) I ≡ ≡ ≡ ≡ ∂ ∂ ∂ ∂ ≠ ≠ y y s s x x and and λ λ s s θ θ with with s s x x , s s θ θ 0 0 . Then Then, x θ θ ( ) ( ) = − − ∂ − 1 1 1 λ | y s ( λ ) | s ( y ) s ( λ ) . f f ' λ I I 4/15/2010 7

  8. 3. (Non-informative) Prior probability distributions: ( ) ( ) ( ) ( ) ( ) = = Theorem 1 (Bayes). θ , x θ | x x x | θ θ f f f f f I I I I I ( ) ( ) ( ( ) ) θ θ x x | | θ θ ( ) f f f f ( ) ( ) ( ) ∫ ∫ ⇒ = = θ | x , x θ x | θ θ . m I I f f f f d ( ) I x I I I m f  I T. Bayes (1763). Phil. Trans. R. Soc., 53 , 370 418. T Bayes (1763) Phil Trans R Soc 53 370-418 P. S. Laplace (1774). Mém. Acad. R. Sci., 6 , 621-656. ( ) θ : (non - informativ e) prior probabilit y distributi on. f I ( ) Uniform θ : (Bayes, Laplace). f I 4/15/2010 8

  9. Mathematical difficulties: ∞ ∞ ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ∫ ∫ ∫ ∫ τ τ = ⇒ ⇒ τ τ τ τ = ∞ ∞ τ τ τ τ τ τ = ∞ ∞ const const. , | | , a a f f f f d d f f f f t t d d 1 1 I I I I I I I I 0 0 ) ( ) μ μ = τ ⇒ μ = ≠ ln const. b f e ′ I σ = 1 ) τ ; 1 1 = ( 1 t L τ 4/15/2010 9

  10. Conceptual (interpretational) difficulties: τ ↔ a) a) We We do do not not know know anything anything about about we we know know that that τ is uniformly distribute d, τ ↔ τ b) is unknown but fixed is distribute d. “ ...inverse probability is a mistake (perhaps the only mistake p y (p p y to which the mathematical world has so deeply committed ï itself),...” (R. A. Fisher (1922). Phil. Trans. R. Soc., A 222 , 309-368) (R. A. Fisher (1922). Phil. Trans. R. Soc., A 222 , 309 368) 4/15/2010 10

  11. 4. Factorization Theorem and consistency factors: ( ( ) ) ( ( ) ; ) ∃ ∃ Theorem 2 (Bayes) Theorem 2 (Bayes). θ θ , x x | | x x , θ θ , x x | | x x ; f f f f 1 2 2 1 I I ( ) ( ) ∫ = > θ | x θ , x | x x 0 ; n f f d 1 , 2 2 1 2 , 1 I I n  ( ( ) ) = ∫ ( ( ) ) ∫ > ; x | x θ , x | x m θ 0 f f d 1 , 2 2 , 1 2 1 I I m  ( ) ( ) ( ) = X , X i.i.d., x , x | θ x | θ x | θ ; f f f 1 2 1 2 1 2 I I I ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) θ | x x | θ θ | x x | θ ( ) f f f f ⇒ = = θ | x , x 1 2 2 1 . I I I I f ( ) ( ) 1 2 I x | x x | x f f 2 1 1 2 I I Under Under analogous analogous conditions conditions : : ( ) ( ) ( ) ( ) θ | θ , x x | θ , θ θ | θ , x x | θ , θ ( ) f f f f = = 1 2 1 2 1 2 1 2 2 1 1 2 . θ | θ , x , x I I I I f ( ( ) ) ( ( ) ) 1 2 1 2 I x x | | θ θ , , x x x x | | θ θ , , x x f f f f 2 2 2 2 1 1 1 1 2 2 2 2 I I I I ( ( ) ) ( ( ) ( ) ( ) ) ( ( ) ( ) ( ) . ) = = Proof. θ , x | | x θ | | x x | | θ x | | x θ | | x , x f f f f f f f f f f ฀ ฀ 1 1 , 2 2 2 2 , 1 1 2 2 , 1 1 1 1 , 2 2 1 1 , 2 2 2 2 , 1 1 1 1 2 2 I I I I I I I I I I 4/15/2010 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend