introduction to filters
play

Introduction to filters Consider v ( t ) = v 1 ( t ) + v 2 ( t ) = V - PowerPoint PPT Presentation

Introduction to filters Consider v ( t ) = v 1 ( t ) + v 2 ( t ) = V m 1 sin 1 t + V m 2 sin 2 t . 1 v 1 v v 2 0 1 0 5 10 15 20 0 5 10 15 20 t (msec) t (msec) Introduction to filters Consider v ( t ) = v 1 ( t ) + v 2 ( t )


  1. Practical filters Low−pass High−pass | H | | H | | H | | H | Amax Amax 1 1 ������������ ������������ ������������ ������������ Ideal Practical Ideal ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Amin Amin ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Practical ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ 0 0 0 0 0 0 ω 0 0 ω ω ω ω c ω c ω s ω c ω s ω c * A practical filter may exhibit a ripple. A max is called the maximum passband ripple, e.g., A max = 1 dB. * A min is the minimum attenuation to be provided by the filter, e.g., A min = 60 dB. M. B. Patil, IIT Bombay

  2. Practical filters Low−pass High−pass | H | | H | | H | | H | Amax Amax 1 1 ������������ ������������ ������������ ������������ Ideal Practical Ideal ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Amin Amin ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Practical ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ 0 0 0 0 0 0 ω 0 0 ω ω ω ω c ω c ω s ω c ω s ω c * A practical filter may exhibit a ripple. A max is called the maximum passband ripple, e.g., A max = 1 dB. * A min is the minimum attenuation to be provided by the filter, e.g., A min = 60 dB. * ω s : edge of the stop band. M. B. Patil, IIT Bombay

  3. Practical filters Low−pass High−pass | H | | H | | H | | H | Amax Amax 1 1 ������������ ������������ ������������ ������������ Ideal Practical Ideal ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Amin Amin ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Practical ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ 0 0 0 0 0 0 ω 0 0 ω ω ω ω c ω c ω s ω c ω s ω c * A practical filter may exhibit a ripple. A max is called the maximum passband ripple, e.g., A max = 1 dB. * A min is the minimum attenuation to be provided by the filter, e.g., A min = 60 dB. * ω s : edge of the stop band. * ω s /ω c (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter. M. B. Patil, IIT Bombay

  4. Practical filters Low−pass High−pass | H | | H | | H | | H | Amax Amax 1 1 ������������ ������������ ������������ ������������ Ideal Practical Ideal ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Amin Amin ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Practical ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ 0 0 0 0 0 0 ω 0 0 ω ω ω ω c ω c ω s ω c ω s ω c * A practical filter may exhibit a ripple. A max is called the maximum passband ripple, e.g., A max = 1 dB. * A min is the minimum attenuation to be provided by the filter, e.g., A min = 60 dB. * ω s : edge of the stop band. * ω s /ω c (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter. * ω c < ω < ω s : transition band. M. B. Patil, IIT Bombay

  5. Practical filters 1 For a low-pass filter, H ( s ) = . n � a i ( s /ω c ) i i =0 Coefficients ( a i ) for various types of filters are tabulated in handbooks. We now look at | H ( j ω ) | for two commonly used filters. M. B. Patil, IIT Bombay

  6. Practical filters 1 For a low-pass filter, H ( s ) = . n � a i ( s /ω c ) i i =0 Coefficients ( a i ) for various types of filters are tabulated in handbooks. We now look at | H ( j ω ) | for two commonly used filters. Butterworth filters: 1 | H ( j ω ) | = 1 + ǫ 2 ( ω/ω c ) 2 n . � M. B. Patil, IIT Bombay

  7. Practical filters 1 For a low-pass filter, H ( s ) = . n � a i ( s /ω c ) i i =0 Coefficients ( a i ) for various types of filters are tabulated in handbooks. We now look at | H ( j ω ) | for two commonly used filters. Butterworth filters: 1 | H ( j ω ) | = 1 + ǫ 2 ( ω/ω c ) 2 n . � Chebyshev filters: 1 | H ( j ω ) | = where � 1 + ǫ 2 C 2 n ( ω/ω c ) n cos − 1 ( x ) C n ( x ) = cos � � for x ≤ 1, n cosh − 1 ( x ) � � C n ( x ) = cosh for x ≥ 1, M. B. Patil, IIT Bombay

  8. Practical filters 1 For a low-pass filter, H ( s ) = . n � a i ( s /ω c ) i i =0 Coefficients ( a i ) for various types of filters are tabulated in handbooks. We now look at | H ( j ω ) | for two commonly used filters. Butterworth filters: 1 | H ( j ω ) | = 1 + ǫ 2 ( ω/ω c ) 2 n . � Chebyshev filters: 1 | H ( j ω ) | = where � 1 + ǫ 2 C 2 n ( ω/ω c ) n cos − 1 ( x ) C n ( x ) = cos � � for x ≤ 1, n cosh − 1 ( x ) � � C n ( x ) = cosh for x ≥ 1, H ( s ) for a high-pass filter can be obtained from H ( s ) of the corresponding low-pass filter by ( s /ω c ) → ( ω c / s ) . M. B. Patil, IIT Bombay

  9. Practical filters (low-pass) Butterworth filters: ǫ = 0.5 0 1 n=1 | H | (dB) n=1 2 | H | 2 3 3 4 4 5 −100 5 0 0 1 2 3 4 5 0.01 0.1 1 10 100 ω/ω c ω/ω c Chebyshev filters: 0 ǫ = 0.5 1 n=1 n=1 | H | (dB) 2 | H | 2 3 3 4 −100 4 5 5 0 0 1 2 3 4 5 0.01 0.1 1 10 100 ω/ω c ω/ω c M. B. Patil, IIT Bombay

  10. Practical filters (high-pass) Butterworth filters: 0 1 n=1 n=1 | H | (dB) 2 | H | 2 3 3 4 4 5 ǫ = 0.5 5 −100 0 0 1 2 3 4 0.01 0.1 1 10 100 ω/ω c ω/ω c Chebyshev filters: 0 1 n=1 n=1 | H | (dB) 2 | H | 3 2 4 5 3 ǫ = 0.5 −100 4 5 0 0 1 2 3 4 0.01 0.1 1 10 100 ω/ω c ω/ω c M. B. Patil, IIT Bombay

  11. Passive filter example R Vs Vo 100 Ω C 5 µ F

  12. Passive filter example R Vs Vo (1/sC) 1 100 Ω H(s) = R + (1/sC) = 1 + (s /ω 0 ) , C 5 µ F with ω 0 = 1/RC → f 0 = ω 0 / 2 π = 318 Hz (Low−pass filter)

  13. Passive filter example R Vs Vo (1/sC) 1 100 Ω H(s) = R + (1/sC) = 1 + (s /ω 0 ) , C 5 µ F with ω 0 = 1/RC → f 0 = ω 0 / 2 π = 318 Hz (Low−pass filter) 20 0 | H | (dB) −20 −40 −60 101 102 103 104 105 f (Hz) (SEQUEL file: ee101 rc ac 2.sqproj ) M. B. Patil, IIT Bombay

  14. Passive filter example R Vs Vo 100 Ω L C 0.1 mF 4 µ F

  15. Passive filter example R Vs Vo ( sL ) � ( 1/sC ) s(L/R) H(s) = R + (sL) � (1/sC) = 100 Ω 1 + s(L/R) + s 2 LC √ L C with ω 0 = 1 / LC → f 0 = ω 0 / 2 π = 7.96 kHz 0.1 mF 4 µ F (Band−pass filter)

  16. Passive filter example R Vs Vo ( sL ) � ( 1/sC ) s(L/R) H(s) = R + (sL) � (1/sC) = 100 Ω 1 + s(L/R) + s 2 LC √ L C with ω 0 = 1 / LC → f 0 = ω 0 / 2 π = 7.96 kHz 0.1 mF 4 µ F (Band−pass filter) 0 −20 | H | (dB) −40 −60 −80 102 103 104 105 f (Hz) (SEQUEL file: ee101 rlc 3.sqproj ) M. B. Patil, IIT Bombay

  17. Op-amp filters (“Active” filters) * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit. M. B. Patil, IIT Bombay

  18. Op-amp filters (“Active” filters) * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit. * With op-amps, a filter circuit can be designed with a pass-band gain. M. B. Patil, IIT Bombay

  19. Op-amp filters (“Active” filters) * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit. * With op-amps, a filter circuit can be designed with a pass-band gain. * Op-amp filters can be easily incorporated in an integrated circuit. M. B. Patil, IIT Bombay

  20. Op-amp filters (“Active” filters) * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit. * With op-amps, a filter circuit can be designed with a pass-band gain. * Op-amp filters can be easily incorporated in an integrated circuit. * However, there are situations in which passive filters are still used. - high frequencies at which op-amps do not have sufficient gain - high power which op-amps cannot handle M. B. Patil, IIT Bombay

  21. Op-amp filters: example R 2 10 k C R 1 10 nF V s 1 k V o R L

  22. Op-amp filters: example R 2 10 k C R 1 10 nF V s 1 k V o R L Op-amp filters are designed for op-amp operation in the linear region → Our analysis of the inverting amplifier applies, and we get, V o = − R 2 � (1 / sC ) V s ( V s and V o are phasors) R 1 H ( s ) = − R 2 1 1 + sR 2 C R 1

  23. Op-amp filters: example R 2 10 k C R 1 10 nF V s 1 k V o R L Op-amp filters are designed for op-amp operation in the linear region → Our analysis of the inverting amplifier applies, and we get, V o = − R 2 � (1 / sC ) V s ( V s and V o are phasors) R 1 H ( s ) = − R 2 1 1 + sR 2 C R 1 This is a low-pass filter, with ω 0 = 1 / R 2 C (i.e., f 0 = ω 0 / 2 π = 1 . 59 kHz).

  24. Op-amp filters: example R 2 20 10 k C R 1 10 nF | H | (dB) V s 1 k 0 V o R L −20 10 1 10 2 10 3 10 4 10 5 f (Hz) Op-amp filters are designed for op-amp operation in the linear region → Our analysis of the inverting amplifier applies, and we get, V o = − R 2 � (1 / sC ) V s ( V s and V o are phasors) R 1 H ( s ) = − R 2 1 1 + sR 2 C R 1 This is a low-pass filter, with ω 0 = 1 / R 2 C (i.e., f 0 = ω 0 / 2 π = 1 . 59 kHz).

  25. Op-amp filters: example R 2 20 10 k C R 1 10 nF | H | (dB) V s 1 k 0 V o R L −20 10 1 10 2 10 3 10 4 10 5 f (Hz) Op-amp filters are designed for op-amp operation in the linear region → Our analysis of the inverting amplifier applies, and we get, V o = − R 2 � (1 / sC ) V s ( V s and V o are phasors) R 1 H ( s ) = − R 2 1 1 + sR 2 C R 1 This is a low-pass filter, with ω 0 = 1 / R 2 C (i.e., f 0 = ω 0 / 2 π = 1 . 59 kHz). (SEQUEL file: ee101 op filter 1.sqproj ) M. B. Patil, IIT Bombay

  26. Op-amp filters: example R 2 10 k C R 1 V s 1 k 100 nF V o R L

  27. Op-amp filters: example R 2 10 k C R 1 V s 1 k 100 nF V o R L R 2 sR 2 C H ( s ) = − R 1 + (1 / sC ) = − 1 + sR 1 C .

  28. Op-amp filters: example R 2 10 k C R 1 V s 1 k 100 nF V o R L R 2 sR 2 C H ( s ) = − R 1 + (1 / sC ) = − 1 + sR 1 C . This is a high-pass filter, with ω 0 = 1 / R 1 C (i.e., f 0 = ω 0 / 2 π = 1 . 59 kHz).

  29. Op-amp filters: example 20 R 2 10 k C R 1 0 V s | H | (dB) 1 k 100 nF V o R L −20 −40 10 1 10 2 10 3 10 4 10 5 f (Hz) R 2 sR 2 C H ( s ) = − R 1 + (1 / sC ) = − 1 + sR 1 C . This is a high-pass filter, with ω 0 = 1 / R 1 C (i.e., f 0 = ω 0 / 2 π = 1 . 59 kHz).

  30. Op-amp filters: example 20 R 2 10 k C R 1 0 V s | H | (dB) 1 k 100 nF V o R L −20 −40 10 1 10 2 10 3 10 4 10 5 f (Hz) R 2 sR 2 C H ( s ) = − R 1 + (1 / sC ) = − 1 + sR 1 C . This is a high-pass filter, with ω 0 = 1 / R 1 C (i.e., f 0 = ω 0 / 2 π = 1 . 59 kHz). (SEQUEL file: ee101 op filter 2.sqproj ) M. B. Patil, IIT Bombay

  31. Op-amp filters: example R 2 100 k C 2 C 1 80 pF R 1 V s 10 k 0.8 µ F V o R L

  32. Op-amp filters: example R 2 100 k C 2 C 1 80 pF R 1 V s 10 k 0.8 µ F V o R L H ( s ) = − R 2 � (1 / sC 2 ) R 1 + (1 / sC 1 ) = − R 2 sR 1 C 1 (1 + sR 1 C 1 )(1 + sR 2 C 2 ) . R 1

  33. Op-amp filters: example R 2 100 k C 2 C 1 80 pF R 1 V s 10 k 0.8 µ F V o R L H ( s ) = − R 2 � (1 / sC 2 ) R 1 + (1 / sC 1 ) = − R 2 sR 1 C 1 (1 + sR 1 C 1 )(1 + sR 2 C 2 ) . R 1 This is a band-pass filter, with ω L = 1 / R 1 C 1 and ω H = 1 / R 2 C 2 . → f L = 20 Hz, f H = 20 kHz.

  34. Op-amp filters: example R 2 20 100 k C 2 | H | (dB) C 1 80 pF R 1 V s 10 k 0.8 µ F V o R L 0 10 0 10 2 10 4 10 6 f (Hz) H ( s ) = − R 2 � (1 / sC 2 ) R 1 + (1 / sC 1 ) = − R 2 sR 1 C 1 (1 + sR 1 C 1 )(1 + sR 2 C 2 ) . R 1 This is a band-pass filter, with ω L = 1 / R 1 C 1 and ω H = 1 / R 2 C 2 . → f L = 20 Hz, f H = 20 kHz.

  35. Op-amp filters: example R 2 20 100 k C 2 | H | (dB) C 1 80 pF R 1 V s 10 k 0.8 µ F V o R L 0 10 0 10 2 10 4 10 6 f (Hz) H ( s ) = − R 2 � (1 / sC 2 ) R 1 + (1 / sC 1 ) = − R 2 sR 1 C 1 (1 + sR 1 C 1 )(1 + sR 2 C 2 ) . R 1 This is a band-pass filter, with ω L = 1 / R 1 C 1 and ω H = 1 / R 2 C 2 . → f L = 20 Hz, f H = 20 kHz. (SEQUEL file: ee101 op filter 3.sqproj ) M. B. Patil, IIT Bombay

  36. Graphic equalizer C1 20 a 1−a R1A R2 R1B V s a=0.9 C2 0.7 | H | (dB) 0.5 0 R3A R3B 0.3 R1A = R1B = 470 Ω R3A = R3B = 100 k Ω V o 0.1 R2 = 10 k Ω R L C1 = 100 nF C2 = 10 nF −20 10 1 10 2 10 3 10 4 10 5 f (Hz) (Ref.: S. Franco, "Design with Op Amps and analog ICs") M. B. Patil, IIT Bombay

  37. Graphic equalizer C1 20 a 1−a R1A R2 R1B V s a=0.9 C2 0.7 | H | (dB) 0.5 0 R3A R3B 0.3 R1A = R1B = 470 Ω R3A = R3B = 100 k Ω V o 0.1 R2 = 10 k Ω R L C1 = 100 nF C2 = 10 nF −20 10 1 10 2 10 3 10 4 10 5 f (Hz) (Ref.: S. Franco, "Design with Op Amps and analog ICs") * Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation) around a centre frequency. M. B. Patil, IIT Bombay

  38. Graphic equalizer C1 20 a 1−a R1A R2 R1B V s a=0.9 C2 0.7 | H | (dB) 0.5 0 R3A R3B 0.3 R1A = R1B = 470 Ω R3A = R3B = 100 k Ω V o 0.1 R2 = 10 k Ω R L C1 = 100 nF C2 = 10 nF −20 10 1 10 2 10 3 10 4 10 5 f (Hz) (Ref.: S. Franco, "Design with Op Amps and analog ICs") * Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation) around a centre frequency. * The circuit shown above represents one of the equalizer sections. (SEQUEL file: ee101 op filter 4.sqproj ) M. B. Patil, IIT Bombay

  39. M. B. Patil, IIT Bombay

  40. Sallen-Key filter example (2 nd order, low-pass) 40 C1 20 R1 R2 V s V 1 V o 0 | H | (dB) C2 R L −20 R1 = R2 = 15.8 k Ω RB C1 = C2 = 10 nF RA −40 RA = 10 k Ω , RB = 17.8 k Ω −60 (Ref.: S. Franco, "Design with Op Amps and analog ICs") 10 1 10 2 10 3 10 4 10 5 f (Hz) M. B. Patil, IIT Bombay

  41. Sallen-Key filter example (2 nd order, low-pass) 40 C1 20 R1 R2 V s V 1 V o 0 | H | (dB) C2 R L −20 R1 = R2 = 15.8 k Ω RB C1 = C2 = 10 nF RA −40 RA = 10 k Ω , RB = 17.8 k Ω −60 (Ref.: S. Franco, "Design with Op Amps and analog ICs") 10 1 10 2 10 3 10 4 10 5 f (Hz) R A V + = V − = V o ≡ V o / K . R A + R B M. B. Patil, IIT Bombay

  42. Sallen-Key filter example (2 nd order, low-pass) 40 C1 20 R1 R2 V s V 1 V o 0 | H | (dB) C2 R L −20 R1 = R2 = 15.8 k Ω RB C1 = C2 = 10 nF RA −40 RA = 10 k Ω , RB = 17.8 k Ω −60 (Ref.: S. Franco, "Design with Op Amps and analog ICs") 10 1 10 2 10 3 10 4 10 5 f (Hz) R A V + = V − = V o ≡ V o / K . R A + R B (1 / sC 2 ) 1 Also, V + = R 2 + (1 / sC 2 ) V 1 = V 1 . 1 + sR 2 C 2 M. B. Patil, IIT Bombay

  43. Sallen-Key filter example (2 nd order, low-pass) 40 C1 20 R1 R2 V s V 1 V o 0 | H | (dB) C2 R L −20 R1 = R2 = 15.8 k Ω RB C1 = C2 = 10 nF RA −40 RA = 10 k Ω , RB = 17.8 k Ω −60 (Ref.: S. Franco, "Design with Op Amps and analog ICs") 10 1 10 2 10 3 10 4 10 5 f (Hz) R A V + = V − = V o ≡ V o / K . R A + R B (1 / sC 2 ) 1 Also, V + = R 2 + (1 / sC 2 ) V 1 = V 1 . 1 + sR 2 C 2 1 ( V s − V 1 ) + sC 1 ( V o − V 1 ) + 1 KCL at V 1 → ( V + − V 1 ) = 0 . R 1 R 2 M. B. Patil, IIT Bombay

  44. Sallen-Key filter example (2 nd order, low-pass) 40 C1 20 R1 R2 V s V 1 V o 0 | H | (dB) C2 R L −20 R1 = R2 = 15.8 k Ω RB C1 = C2 = 10 nF RA −40 RA = 10 k Ω , RB = 17.8 k Ω −60 (Ref.: S. Franco, "Design with Op Amps and analog ICs") 10 1 10 2 10 3 10 4 10 5 f (Hz) R A V + = V − = V o ≡ V o / K . R A + R B (1 / sC 2 ) 1 Also, V + = R 2 + (1 / sC 2 ) V 1 = V 1 . 1 + sR 2 C 2 1 ( V s − V 1 ) + sC 1 ( V o − V 1 ) + 1 KCL at V 1 → ( V + − V 1 ) = 0 . R 1 R 2 K Combining the above equations, H ( s ) = . 1 + s [( R 1 + R 2 ) C 2 + (1 − K ) R 1 C 1 ] + s 2 R 1 C 1 R 2 C 2 (SEQUEL file: ee101 op filter 5.sqproj ) M. B. Patil, IIT Bombay

  45. Sixth-order Chebyshev low-pass filter (cascade design) 5.1 n 10 n 62 n V o V s 10.7 k 10.2 k 8.25 k 6.49 k 4.64 k 2.49 k RL 2.2 n 510 p 220 p 20 (Ref.: S. Franco, "Design with Op Amps and analog ICs") SEQUEL file: ee101_op_filter_6.sqproj 0 −20 | H | (dB) −40 −60 −80 10 2 10 3 10 4 10 5 f (Hz) M. B. Patil, IIT Bombay

  46. Third-order Chebyshev high-pass filter 20 15.4 k 154 k 100 n 7.68 k 0 V o V s −20 | H | (dB) R L 100 n 100 n 54.9 k −40 −60 (Ref.: S. Franco, "Design with Op Amps and analog ICs") SEQUEL file: ee101_op_filter_7.sqproj −80 10 0 10 1 10 2 10 3 f (Hz) M. B. Patil, IIT Bombay

  47. Band-pass filter example 40 5 k 5 k 7.4 n 20 5 k 7.4 n V s 5 k | H | (dB) 5 k 0 −20 370 k V o 5 k −40 10 2 10 3 10 4 10 5 (Ref.: J. M. Fiore, "Op Amps and linear ICs") f (Hz) SEQUEL file: ee101_op_filter_8.sqproj M. B. Patil, IIT Bombay

  48. 10 k Notch filter example 10 k 265 n 10 k 265 n V s 10 k 10 k 10 k 10 k V o 89 k 10 k 1 k 0 (Ref.: J. M. Fiore, "Op Amps and linear ICs") SEQUEL file: ee101_op_filter_9.sqproj | H | (dB) −20 −40 10 1 10 2 f (Hz) M. B. Patil, IIT Bombay

  49. Half-wave rectifier V o slope = 1 Ideal half-wave V i V o V i rectifier

  50. Half-wave rectifier V o 1 slope = 1 Ideal V o 0 half-wave V i V o V i rectifier V i -1 0 T/2 T 3T/2 2T

  51. Half-wave rectifier V o 1 slope = 1 Ideal V o 0 half-wave V i V o V i rectifier V i -1 0 T/2 T 3T/2 2T V o V i V o slope = 1 V i V on

  52. Half-wave rectifier V o 1 slope = 1 Ideal V o 0 half-wave V i V o V i rectifier V i -1 0 T/2 T 3T/2 2T V o 1 V on V i V o V i slope = 1 V o 0 V i V on -1 0 T/2 T 3T/2 2T

  53. Half-wave rectifier V o 1 slope = 1 Ideal V o 0 half-wave V i V o V i rectifier V i -1 0 T/2 T 3T/2 2T V o 1 V on V i V o V i slope = 1 V o 0 V i V on -1 → need an improved circuit 0 T/2 T 3T/2 2T M. B. Patil, IIT Bombay

  54. Half-wave precision rectifier V o D V i R

  55. Half-wave precision rectifier i D i − V o V o V o1 D V on V i V i i R R R Consider two cases: (i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

  56. Half-wave precision rectifier i D i − V o V o V o1 D V on V i V i i R R R Consider two cases: (i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier. Since the input current i − ≈ 0, i R = i D . V + − V − = V o 1 = V o + 0 . 7 V ≈ 0 V → V o = V − ≈ V + = V i . A V A V

  57. Half-wave precision rectifier i D i − V o V o V o1 D V on V i V i i R R R Consider two cases: (i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier. Since the input current i − ≈ 0, i R = i D . V + − V − = V o 1 = V o + 0 . 7 V ≈ 0 V → V o = V − ≈ V + = V i . A V A V This situation arises only if i D > 0 (since the diode can only conduct in the forward direction), i.e., i R > 0 → V o = i R R > 0, and therefore V i = V o > 0 V .

  58. Half-wave precision rectifier V o i D i − V o V o V o1 D V on V i V i slope=1 i R R R V i Consider two cases: (i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier. Since the input current i − ≈ 0, i R = i D . V + − V − = V o 1 = V o + 0 . 7 V ≈ 0 V → V o = V − ≈ V + = V i . A V A V This situation arises only if i D > 0 (since the diode can only conduct in the forward direction), i.e., i R > 0 → V o = i R R > 0, and therefore V i = V o > 0 V . M. B. Patil, IIT Bombay

  59. Half-wave precision rectifier V o i D i − V o V o V o1 D V on V i V i slope=1 i R R R V i Consider two cases: (i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier. Since the input current i − ≈ 0, i R = i D . V + − V − = V o 1 = V o + 0 . 7 V ≈ 0 V → V o = V − ≈ V + = V i . A V A V This situation arises only if i D > 0 (since the diode can only conduct in the forward direction), i.e., i R > 0 → V o = i R R > 0, and therefore V i = V o > 0 V . Note: V on does not appear in the graph. M. B. Patil, IIT Bombay

  60. Half-wave precision rectifier V o D V i R

  61. Half-wave precision rectifier V o V o V o1 D V i V i R R (ii) D is not conducting → V o = 0 V .

  62. Half-wave precision rectifier V o V o V o1 D V i V i R R (ii) D is not conducting → V o = 0 V . What about V o 1 ? Since the op-amp is now in the open-loop configuration, a very small V i is enough to drive it to saturation.

  63. Half-wave precision rectifier V o V o V o1 D V i V i R R (ii) D is not conducting → V o = 0 V . What about V o 1 ? Since the op-amp is now in the open-loop configuration, a very small V i is enough to drive it to saturation. Note that Case ( ii ) occurs when V i < 0 V (we have already looked at V i > 0). Since V + − V − = V i − 0 = V i is negative, V o 1 is driven to − V sat .

  64. Half-wave precision rectifier V o V o V o V o1 D V i V i R R V o = 0 V i (ii) D is not conducting → V o = 0 V . What about V o 1 ? Since the op-amp is now in the open-loop configuration, a very small V i is enough to drive it to saturation. Note that Case ( ii ) occurs when V i < 0 V (we have already looked at V i > 0). Since V + − V − = V i − 0 = V i is negative, V o 1 is driven to − V sat . M. B. Patil, IIT Bombay

  65. Half-wave precision rectifier V o Super D on diode D off D V o V o V i V o = V i V o1 V i R i R R V o = 0 Super diode V i M. B. Patil, IIT Bombay

  66. Half-wave precision rectifier V o Super D on diode D off D V o V o V i V o = V i V o1 V i R i R R V o = 0 Super diode V i * The circuit is called “super diode” (an ideal diode with V on = 0 V). M. B. Patil, IIT Bombay

  67. Half-wave precision rectifier V o Super D on diode D off D V o V o V i V o = V i V o1 V i R i R R V o = 0 Super diode V i * The circuit is called “super diode” (an ideal diode with V on = 0 V). * When D conducts, the op-amp operates in the linear region, and we have V + ≈ V − . M. B. Patil, IIT Bombay

  68. Half-wave precision rectifier V o Super D on diode D off D V o V o V i V o = V i V o1 V i R i R R V o = 0 Super diode V i * The circuit is called “super diode” (an ideal diode with V on = 0 V). * When D conducts, the op-amp operates in the linear region, and we have V + ≈ V − . * When D is off, the op-amp operates in the saturation region, V − = 0, V + = V i , and V o 1 = − V sat . M. B. Patil, IIT Bombay

  69. Half-wave precision rectifier V o Super D on diode D off D V o V o V i V o = V i V o1 V i R i R R V o = 0 Super diode V i * The circuit is called “super diode” (an ideal diode with V on = 0 V). * When D conducts, the op-amp operates in the linear region, and we have V + ≈ V − . * When D is off, the op-amp operates in the saturation region, V − = 0, V + = V i , and V o 1 = − V sat . * Where does i R come from? M. B. Patil, IIT Bombay

  70. 1.5 A = 1 M = 0.3 m (t) f c = 200 kHz 0 f m = 10 kHz Application: AM demodulation −1.5 1.5 c (t) 0 −1.5 1.5 y (t) 0 −1.5 0 25 50 75 100 time ( µ sec ) M. B. Patil, IIT Bombay

  71. 1.5 A = 1 M = 0.3 m (t) f c = 200 kHz 0 f m = 10 kHz Application: AM demodulation −1.5 1.5 Carrier wave: c ( t ) = A sin(2 π f c t ) c (t) 0 −1.5 1.5 y (t) 0 −1.5 0 25 50 75 100 time ( µ sec ) M. B. Patil, IIT Bombay

  72. 1.5 A = 1 M = 0.3 m (t) f c = 200 kHz 0 f m = 10 kHz Application: AM demodulation −1.5 1.5 Carrier wave: c ( t ) = A sin(2 π f c t ) c (t) Signal (e.g., audio): 0 m ( t ) = M sin(2 π f m t + φ ) −1.5 1.5 y (t) 0 −1.5 0 25 50 75 100 time ( µ sec ) M. B. Patil, IIT Bombay

  73. 1.5 A = 1 M = 0.3 m (t) f c = 200 kHz 0 f m = 10 kHz Application: AM demodulation −1.5 1.5 Carrier wave: c ( t ) = A sin(2 π f c t ) c (t) Signal (e.g., audio): 0 m ( t ) = M sin(2 π f m t + φ ) AM wave: −1.5 y ( t ) = [1 + m ( t )] c ( t ) 1.5 (Assume M < 1) y (t) 0 −1.5 0 25 50 75 100 time ( µ sec ) M. B. Patil, IIT Bombay

  74. 1.5 A = 1 M = 0.3 m (t) f c = 200 kHz 0 f m = 10 kHz Application: AM demodulation −1.5 1.5 Carrier wave: c ( t ) = A sin(2 π f c t ) c (t) Signal (e.g., audio): 0 m ( t ) = M sin(2 π f m t + φ ) AM wave: −1.5 y ( t ) = [1 + m ( t )] c ( t ) 1.5 (Assume M < 1) e.g., Vividh Bharati: y (t) 0 f c = 1188 kHz, f m ≃ 10 kHz (audio). −1.5 0 25 50 75 100 time ( µ sec ) M. B. Patil, IIT Bombay

  75. AM demodulation using a peak detector 0.15 V i V 1 Super diode V i V 1 filter V o AM 0 input −0.15 0 1 2 0.2 0.3 0.4 0.5 t (ms) t (ms) M. B. Patil, IIT Bombay

  76. AM demodulation using a peak detector 0.15 V i V 1 Super diode V i V 1 filter V o AM 0 input −0.15 0 1 2 0.2 0.3 0.4 0.5 t (ms) t (ms) * charging through super diode, discharging through resistor M. B. Patil, IIT Bombay

  77. AM demodulation using a peak detector 0.15 V i V 1 Super diode V i V 1 filter V o AM 0 input −0.15 0 1 2 0.2 0.3 0.4 0.5 t (ms) t (ms) * charging through super diode, discharging through resistor * The time constant ( RC ) needs to be carefully selected. M. B. Patil, IIT Bombay

  78. AM demodulation using a peak detector 0.15 V i V 1 Super diode V i V 1 filter V o AM 0 input −0.15 0 1 2 0.2 0.3 0.4 0.5 t (ms) t (ms) * charging through super diode, discharging through resistor * The time constant ( RC ) needs to be carefully selected. SEQUEL file: super diode.sqproj M. B. Patil, IIT Bombay

  79. Clipping and clamping C R V i V i D D V o V o V R V R R L R L C R V i D V i D V o V o V R V R R L R L * What is the function provided by each circuit? M. B. Patil, IIT Bombay

  80. Clipping and clamping C R V i V i D D V o V o V R V R R L R L C R V i D V i D V o V o V R V R R L R L * What is the function provided by each circuit? * Verify with simulation (and in the lab). M. B. Patil, IIT Bombay

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend