status of neutrino mass models
play

Status of neutrino mass models G. Ross, Invisibles 13, Lumley - PowerPoint PPT Presentation

Status of neutrino mass models G. Ross, Invisibles 13, Lumley Castle,July 2013 Neutrino mixing Symmetry or anarchy? Tri-bi-maximal mixing: tan = 1/ Harrison, Perkins, Scott 2 tan = 2 /(1 + 5) 1/ Golden ratio mixing: Datta et al;


  1. Status of neutrino mass models G. Ross, Invisibles 13, Lumley Castle,July 2013

  2. Neutrino mixing Symmetry or anarchy? Tri-bi-maximal mixing: tan Θ = 1/ Harrison, Perkins, Scott 2 tan Θ = 2 /(1 + 5) ≡ 1/ φ Golden ratio mixing: Datta et al; Kajyama et al Barger et al; Fukugita et al tan Θ = 1 Bi 2 -maximal mixing: Davidson, King

  3. Neutrino mixing Gonzalez-Garcia, Maltoni, Salvado, Schwetz see also: Forero, Tortola, Valle Fogli, Lisi, Marrone, Montanino, Palazzo, Rotuno

  4. Symmetries of the mass matrices M l = h T M l h * e . g . Z 3 , h = Diag (1, e 2 i π /3 , e 4 i π /3 ) M l = Diag ( m e , m µ , m τ ) Klein symmetry M ν = S T M ν S Z 2 × Z 2 M ν = U PMNS Diag ( m ⊥ , m  , m @ ) U PMNS T Diag ( ± 1, ± 1, ± 1) U PMNS , det S = 1 S = U PMNS *

  5. Symmetries of the mass matrices M l = h T M l h * e . g . Z 3 , h = Diag (1, e 2 i π /3 , e 4 i π /3 ) M l = Diag ( m e , m µ , m τ ) Klein symmetry M ν = S T M ν S Z 2 × Z 2 M ν = U PMNS Diag ( m ⊥ , m  , m @ ) U PMNS T Diag ( ± 1, ± 1, ± 1) U PMNS , det S = 1 S = U PMNS * Z 2 × Z 2 ⇒ Choice of symmetry mass matrix structure e.g. ¡ ⎛ ⎞ ( − , − ) ν @ = ( ν µ − ν τ ) / 1 0 0 2 { ¡ ⎜ ⎟ µ ↔ τ U = Bi-maximal 0 0 1 θ 13 = 0 ⎜ ⎟ ⎝ ⎠ 0 1 0 ( + , + ) ⎛ ⎞ ν  = ( ν e + ν µ + ν τ ) / − 1 3 2 2 { ¡ S TBM = 1 Tri-maximal ⎜ ⎟ − 1 2 2 ( ) ⎜ ⎟ ( + , − ) 3 ν ⊥ = 2 ν e − ( ν µ + ν τ ) / 2 − 1 ⎝ ⎠ 2 2

  6. Origin of symmetries Direct: φ ν ⎯ ⎯ → Z 2 × Z 2 G family φ l ⎯ → ⎯ l Z 3 l ⊂ S 4 ≅ ( Z 2 × Z 2 ) × S 3 ⊂ SU (3), U ⊂ A 4 ( S TBM "accidental") e . g . U , S TBM , Z 3 | Emergent: Z 2 × Z 2 ⊂ G family G family = Δ (27) ⊂ SU (3) e . g . ν = a ψ i φ 123 i ψ j φ 123 j + b ψ i φ 23 i ψ j φ 23 j L eff Symmetric under { ¡ T,S TBM φ 123 ∝ (1,1,1), φ 2 ∝ (1,0,0), φ 3 ∝ (0,0,1) Vacuum alignment

  7. ⇒ Symmetries ¡ ¡ Tr-Bi-Maximal, Golden Ratio, … θ 13 ≠ 0 ??? Anarchy? ⇒ Symmetry breaking perturbations ? New symmetries ?

  8. Symmetry breaking perturbations ν = m @ ( ν a + ε ab ν b + ..) 2 + m  ( ν b − ε ab ν a + ..) 2 + m ? ( ν c + ..) 2 L m ( ) ν a = 1 { ¡ ν µ − ν τ ( ) { ¡ ν a = 1 ν µ − ν τ 2 ( ) 2 ν b = 1 TBM GR ν e + ν µ + ν τ t θ = 1/ φ ν b = s θ ν e + c θ ( ν µ + ν τ ) / 2 3 ( ) ν c = c θ ν e − s θ ( ν µ + ν τ ) / ν c = 1 2 2 ν e − ν µ − ν τ 6 θ 13 ≠ 0 ⇒ must break U ⇒ ν a , b ν a , c mixing and / or

  9. • General mixing (TBM case): c’s random Altarelli, Feruglio, Merlot

  10. • Restricted (bilinear) mixing (TBM case): ν = m @ ( ν a + ε ab ν b + ..) 2 + m  ( ν b − ε ab ν a + ..) 2 + m ? ( ν c + ..) 2 L m ( ) ν a = 1 { ¡ ⎛ ⎞ ν µ − ν τ 3 e − i δ 2 c s 2 ⎜ ⎟ 6 3 ( ) ν b = 1 TBM ν e + ν µ + ν τ ⎜ ⎟ − 1 3 − 2 e i δ 2 + 3 e − i δ U = c s c s 3 ⎜ ⎟ 6 ( ) ν c = 1 2 e i δ 3 e − i δ ⎜ − 1 3 + − c 2 + ⎟ 2 ν e − ν µ − ν τ c s s ⎝ ⎠ 6 6 θ 13 ≠ 0 ⇒ must break ⇒ ν a , b ν a , c mixing U or ≡ δθ 12 small ⇒ residual symmetry bilinear mixing Z 2 S TBM ⇒ ν a , b , S TBM T ⇒ ν a , c S GR ⇒ ν a , b , S GR T ⇒ ν a , c Hall, GGR Luhn

  11. ν = 1 + e − i δ s 13 s 23 2 2 ⎛ ⎞ ( ) ν = m 3 2 2 + s 13 e − i δ ( ν e + ν µ + ν τ ) 2 s 13 e i δ ( ν µ − ν τ ) @ ( ν µ − ν τ ) / + m  ( ν e + ν µ + ν τ ) / 3 − L m ⎜ ⎟ ⎝ ⎠ θ 13 ⎛ ⎞ 3 e − i δ 2 c s ⎜ ⎟ 6 3 ⎜ ⎟ 2 e i δ 3 e − i δ U = − 1 3 − 2 + c s c s ⎜ ⎟ 6 ⎜ − 1 3 + 2 e i δ − c 2 + 3 e − i δ ⎟ c s s ⎝ ⎠ 6

  12. θ 13 charged lepton or neutrino origin? ν − θ 23 l c 23 ν e i δ 23 s 23 ≈ s 23 ν − θ 12 l c 23 ν c 12 ν e i δ 12 s 12 ≈ s 12 ν − θ 12 θ 13 e − i δ 13 = θ 13 ν + δ 12 ν e − i δ 13 l s 23 ν e − i ( δ 23 e ) (1,1) texture zero †  θ C m e Cabibbo haze: m µ 3 { ¡ θ C M q , l : small mixing …dominated by ν ≈ θ 12 l ν = 0, l s 23 θ 13 θ 13 ≈ θ 12 M ν : tri-bi-maximal 2 2 + m  ν = m @ 2 ⎡ ⎤ ⎡ ⎤ 2 ( ν µ − ν τ ) 3 ( ν e + ν µ + ν τ ) L m 1 1 ⎣ ⎦ ⎣ ⎦ Datta, Everett, Ramond l = θ C (GUT?), θ 13 = 9 0 ! If θ 12 Marzocca, Petkov, Romanino, Spinrath Antusch et al l = θ C † θ 12 …but inconsistent with other plausible GUT relations

  13. Symmetry fights back - I ' : Z 2 × Z 2 S TBM , GR , ( U × CP ) Diag Klein symmetry: Harrison, Scott Feruglio, Hagedorn, Ziegler Ding, King, Luhn, Stuart Talbert, GGR S ,( U × CP ) Diag SU ,( U × CP ) Diag S , U ν a ( + , − ) ( + ,  ) ( − ,  ) ν b ( + , + ) ( + , ± ) ( + , ± ) ν c ( − , + ) ( − , ± ) ( − , ± ) − ν a , ± i ν b ν a , ± i ν c Mixing ⎛ ⎞ 3 e ± i π /2 2 c s ⎜ ⎟ 6 3 ⎜ ⎟ 2 e  i π /2 3 e ± i π /2 U = − 1 3 − 2 + c s c s ⎜ ⎟ 6 ⎜ − 1 3 + 2 e  i π /2 − c 2 + 3 e ± i π /2 ⎟ c s s ⎝ ⎠ 6

  14. Symmetry fights back - I ' : Z 2 × Z 2 S TBM , GR , ( U × CP ) Diag Klein symmetry: Feruglio, Hagedorn, Ziegler Ding, King, Luhn, Stuart ( ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡) ¡ Generalised CP I. ¡ II. ¡ III. ¡

  15. Symmetry fights back - II ' × Z 3 ⊂ G family Z 2 × Z 2 Direct: G family = Δ (600): sin 2 θ 13 = 0.028, sin 2 θ 23 = 0.38 Lam G family = Δ (6 n 2 ) ≅ ( Z n × Z n ) × S 3 , n even | δ = 0, π Trimaximal mixing, King, Neder, Stuart

  16. Symmetry fights back - III Emergent: King 2 ν R (1,1) Texture Zero 1 parameter fit ( m 2 / m 3 ) , η = 2 π , ¡ 5

  17. Vacuum alignment (A 4 model) , η = 2 π 5 King ¡

  18. Symmetry fights back - IV Mixing and masses from an extremum principle ? 5 ⊗ O (3) local = SU (3) [ ] ⎯ ⎯ → Y i Alonso, Gavela, Isidori, Maiani G family Alonso, Gavela, Hernandez, Merlo, Rigolin Grinstein, Redi, Villadoro Y i dynamical variables- “Natural extrema” e.g. x SU(3) adjoint: I 1 = Tr ( x 2 ), I 2 = Det ( x ) V ( I 1 , I 2 ):

  19. “Natural extrema” Quarks : ¡ → Leptons: SU (3) l ⊗ O (3) → SU (2) l ⊗ U (1) Difference due to Majorana masses restricting redefinition of neutrinos Add ¡perturba6ons: ¡ Quasi degenerate neutrinos Normal or inverted hierarchy 2 large mixing angles Θ 13 generically small

  20. Epilogue • Masses -Froggatt-Nielsen -Xtra-dimension/Composite

  21. Epilogue • ( ) Masses -Froggatt-Nielsen n θ Λ -Xtra-dimension/Composite 5D mass parameters Flavour blind Flavour hierarchy Agashe, Okui, Sundrum ..Dirac neutrinos .. q, l θ 13 large 4D strongly coupled AdS/CFT analogue CFT – Walking Technicolour Leptons elementary - couple to Higgs via fermionic operators in strong sector Exponential suppression factors come from RG running with large scaling dimensions

  22. Epilogue • Masses -Froggatt-Nielsen Majorana or Dirac } ¡ Normal/Inverted/ -Xtra-dimension/Composite Quasi-degenerate (O(3))

  23. Epilogue • ( ) Masses -Froggatt-Nielsen n θ Majorana or Dirac } ¡ Λ Normal/Inverted/ † -Xtra-dimension/Composite Quasi-degenerate (O(3)) † Radiative generation of θ 13 Dighe, Goswami, Rodejohann Ellis, Lola …

  24. Epilogue • Masses -Froggatt-Nielsen -Xtra-dimension/Composite -Texture (zeros) e.g. T χ M Krishnan, Harrison, Scott

  25. Epilogue • Masses -Froggatt-Nielsen -Xtra-dimension/Composite -Texture (zeros) • Quark-lepton unification? -Spontaneous breaking (natural extrema) -Hierarchical see-saw

  26. Hierarchical see-saw (Sequential Dominance) Quarks, charged leptons, neutrinos can have similar Dirac mass ⎛ ⎞ q , l , ν = α ψ i φ 3 i j i j i j i j L Dirac ψ j c φ 3 + β ψ i φ 123 ψ c j φ 23 + ψ i φ 23 ψ c j φ 123 ⎟ + γ ψ i φ 23 ψ c j φ 23 Σ 45 α > β ⎜ ⎝ ⎠ ε d = 0.15, a d = 1 ε 3 + ε 4 − ε 3 + ε 4 ⎛ ⎞ m b  3 m τ < ε 4 ε l = 0.15, a e = − 3 M Dirac ⎜ ε 3 + ε 4 a ε 2 + ε 3 − a ε 2 + ε 3 ⎟ ( ) m s  m µ = (1,1) T.Z. ⎜ ⎟ ε u = 0.05, a u = 1 m 3 − ε 3 + ε 4 − a ε 2 + ε 3 ⎜ ⎟ m d  9 m e 1 ⎝ ⎠ ε ν = 0.05, a ν = 0

  27. Hierarchical see-saw (Sequential Dominance) Quarks, charged leptons, neutrinos can have similar Dirac mass ⎛ ⎞ q , l , ν = α ψ i φ 3 i j i j i j i j L Dirac ψ j c φ 3 + β ψ i φ 123 ψ c j φ 23 + ψ i φ 23 ψ c j φ 123 ⎟ + γ ψ i φ 23 ψ c j φ 23 Σ 45 α > β ⎜ ⎝ ⎠ ε d = 0.15, a d = 1 ε 3 + ε 4 − ε 3 + ε 4 ⎛ ⎞ m b  3 m τ < ε 4 ε l = 0.15, a e = − 3 M Dirac ⎜ ε 3 + ε 4 a ε 2 + ε 3 − a ε 2 + ε 3 ⎟ m s  m µ = ⎜ ⎟ ε u = 0.05, a u = 1 m 3 − ε 3 + ε 4 − a ε 2 + ε 3 ⎜ ⎟ m d  9 m e 1 ⎝ ⎠ ε ν = 0.05, a ν = 0 Majorana mass structure M 1 < M 2 << M 3 ( ) i φ 3 i + b ε 3 φ 23 i φ 23 i + c ε 2 φ 123 i φ 123 c a φ 3 i L M = θψ i c ψ j small < φ 23 >= ε (0,1, − 1), < φ 123 >= ε 2 (1,1,1) ν / H 2 = β 2 j + β 2 j + ( α + β ) 2 i ψ j φ 123 i ψ j φ 23 ψ i φ 123 ψ i φ 23 ψ i φ 3 i ψ j φ 3 j L eff ⇒ m  = O ( ε ) M 1 M 2 M 3 m @

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend