neutrino mass experiments
play

Neutrino Mass Experiments Patrick Decowski decowski@nikhef.nl - PowerPoint PPT Presentation

Neutrino Mass Experiments Patrick Decowski decowski@nikhef.nl Measuring Neutrino Mass 0 decay / EC Cosmology Observable Relies on CDM Majorana Kinematics Direct Measurement Using Weak Decays Wish List for Direct Measurements


  1. Neutrino Mass Experiments Patrick Decowski decowski@nikhef.nl

  2. Measuring Neutrino Mass 0 νββ β decay / EC Cosmology Observable Relies on Λ CDM Majorana Kinematics

  3. Direct Measurement Using Weak Decays Wish List for Direct Measurements • low end-point → relatively large spectrum deformation • short life → small source amount / less scattering in source • (super) allowed transition → matrix element reliably calculable • simple molecular → molecular states calculable • high isotopic purity • source stability • established procurement � Only two isotopes of choice: Beta Decay (Tritium) Electron Capture (Holmium) � He � � � � � ��� Ho � � � � ��� D�� � � � � H � � � E 0 = 18.6 keV Q EC = 2.8 keV � 1/2 = 12.3 y � 1/2 = 4570 y super-allowed [Slide S. Enomoto]

  4. Neutrino Mass Measurements with Weak Decays KATRIN Beta Decay (Tritium) � He � � � � � Electron Spectrum � H � � � (E 0 = 18.6 keV) beta electron Electron Capture (Holmium) Dy = Dysprosium ��� Ho � � � � ��� D�� � � � De-excitation Spectrum (Q EC = 2.8 keV) � � X-ray Auger electron No capture from K and L [Slide S. Enomoto]

  5. 6 Electron Spectroscopy with Electro-Static Filter electron tritium U counter source electro-static retarding potential e e eU Problem: only small fraction of electrons reach this → guiding magnetic field [Slide S. Enomoto]

  6. 7 Electron Spectroscopy with Electro-Static Filter electron guiding tritium U counter magnetic-field source electro-static retarding potential eU E parallel / E transversal depends on Problem: only E parallel is measured initial emission angle → adiabatic collimation [Slide S. Enomoto]

  7. 8 Electron Spectroscopy with Electro-Static Filter electron guiding tritium U counter magnetic-field source electro-static retarding potential eU reduce magnetic field adiabatically E � � � � const ⇒ magnetic moment conserves: ⇒ collimation B [Slide S. Enomoto]

  8. 9 MAC-E (Magnetic-Adiabatic-Collimation Electro-static) Filter Adiabatic Transmission (constant magnetic moment) � � � � � � const Energy resolution is electron determined by B-Ratio counter �� � � �min �ma� Retarding eU Potential B min B max Adiabatic Transmission (or blocking) [Slide S. Enomoto]

  9. 11 KATRIN Experiment KArlsruhe TRItium Neutrino Experiment • located at Karlsruhe Institute of Technology, Karlsruhe, Germany • design sensitivity: m( � e ) < 0.2 eV (90%CL, 3 years) Injection Calibration 10 - 14 mbar l/s 1.8 mbar l/s E-Gun Tritium Retention Electron Counter (electrons guided by B) (~10 mHz) 10 11 Bq Gaseous Tritium Source 0.9 eV Resolution MAC-E Filter

  10. KATRIN 70m

  11. Results − 1.1 eV 2 Best-fit: m 2 ( ν e ) = − 1.0 +0.9 KATRIN upper limit on neutrino mass: m ν < 1.1 eV (90% CL) [1 σ fluctuation to negative result] Only 4 weeks of data! By 2024: m ν < 0.2 eV (90% CL) or = 0.35 eV (5 σ ) arXiv:1909.06048

  12. Neutrinoless Double Beta Decay

  13. Double beta decay Isotopes 9 136 53 I � 136 Pr 8 � A=136 59 + � 7 6 5 (A,Z+1) 4 136 La 136 Ce (A,Z) 57 136 � 55 Cs 58 136 � Xe 3 + ββ even-even 54 � (A,Z+2) �� 2 1 136 Ba (MeV) 56 A second-order process only detectable if first-order beta decay is energetically forbidden

  14. Neutrinoless Double Beta Decay e - e - But what if ν is Majorana? ν i ν i M ν 6 = 0 U ei U ei | ∆ L | W - W - = 2 Nuclear Process > > (A, Z) (A, Z+2)

  15. Candidate 0 ν 2 β Nuclei [Candidates with Q>2 MeV] Candidate Q[MeV] %Abund Candidates are even-even nuclei 4.271 0.187 48 Ca → 48 Ti 76 Ge → 76 Se 2.04 7.8 2.995 9.2 82 Se → 82 Kr 96 Zr → 96 Mo 3.35 2.8 (A,Z+1) 100 Mo → 100 Ru 3.034 9.6 (A,Z) 2.013 11.8 110 Pd → 110 Cd ββ even-even 116 Cd → 116 Sn 2.802 7.5 (A,Z+2) 2.228 5.64 124 Sn → 124 Te 2.53 34.5 130 Te → 130 Xe 136 Xe → 136 Ba 2.479 8.9 3.367 5.6 150 Nd → 150 Sm Natural abundance of 0 ν 2 β candidates is low → enrichment necessary

  16. Detecting 0 ν 2 β Decay With energy resolution Without energy resolution 2 ν 2 β 2 ν 2 β : ( A , Z ) → ( A , Z + 2) + 2 e − + 2 ν e 0 ν 2 β : ( A , Z ) → ( A , Z + 2) + 2 e − 0 ν 2 β � E e /Q • General approach: detect the two final-state electrons • Signature: Two simultaneous electrons with summed energy Q ββ , the Q-value for the ββ decay in the isotope of study

  17. 2 ν 2 β has been measured 1 / 2 ) − 1 = G 2 ν ( Q, Z ) | M 2 ν | 2 ( T 2 ν Isotope T 1/22 ν [yr] 48 Ca 4.2±1.0 x 10 19 Phase Space Nuclear factor Matrix Element 76 Ge 1.5±0.1 x 10 21 82 Se 0.92±0.07 x 10 20 • Conserves lepton number 96 Zr 2.0±0.3 x 10 19 100 Mo 7.1±0.4 x 10 18 • Does not discriminate between Dirac and Majorana 116 Cd 3.0±0.2 x 10 19 neutrinos 128 Te 2.5±0.3 x 10 24 • Not sensitive to neutrino mass scale 130 Te 0.9±0.1 x 10 21 136 Xe 2.165±0.054 x 10 21 • Nevertheless: slow process! 150 Nd 7.8±0.8 x 10 18 238 U 2.0±0.6 x 10 21 [2 ν 2EC on 124 Xe: 1.8 x 10 22 yr]

  18. What mass does 0 ν 2 β measure? 1 / 2 ) − 1 = G 0 ν ( Q, Z ) | M 0 ν | 2 � m ββ ⇥ 2 ( T 0 ν Phase Space factor: Nuclear Matrix Element: Interesting physics Calculable Hard to calculate Effective Majorana mass: � � 3 � � X U 2 h m ββ i = ei m i � � [coherent sum] � � � � i =1 Where U ei elements from the Lepton Mixing Matrix

  19. Nuclear Matrix Elements 1 / 2 ) − 1 = G 0 ν ( Q, Z ) | M 0 ν | 2 � m ββ ⇥ 2 ( T 0 ν • Model dependence: spread of 2-3x for each isotope • No significant preference for particular isotope 76 Ge 136 Xe

  20. E ff ective Majorana Mass S. Elliot, Mod. Phys. Lett. A 27, 1230009 (2012) θ 13 non-zero KKDC claim in 76 Ge Next-generation of 0 ν 2 β expt: few 100kg Future 0 ν 2 β expt: ton-scale KATRIN θ 12 = 33.58 0 θ 12 = 33.58 δ δ Normal Inverted θ 13 = 0 0 θ 13 = 8.33 δ δ

  21. Experimental sensitivity 1 / 2 ∝ ✏ a No experimental T 0 ν AMt background: Detector Isotopic Mass Fraction Detector Running Efficiency Time � 1 / 2 ∝ � a Mt With experimental T 0 ν background: A b ∆ E Detector Atomic Resolution Mass Background Rate

  22. Backgrounds • The signal level of the experiments is few cnts/(ton-year) • Background control critical For any rare event expt: log(sensitivity) • Typical backgrounds involved BG free: ~t • Contamination from U and Th decay-chain isotopes BG: ~t 1/2 Systematics • Compton-scattered ɣ rays, β and α particles • Cosmogenic muon induced backgrounds log(exposure) =mass x time • Activation of shielding, source material etc. 0 ν 2 β experiments are ultra-clean and conducted deep under ground

  23. Q-val and Background Natural radioactivity ( 40 K, 60 Co, 234m Pa, external 214 Bi and 208 Tl…) 214 Bi and Radon 208 Tl (2.6 MeV γ line) and Thorium γ from (n, γ ) reactions Surface or bulk contamination in α emitters Cosmogenic production 150 Nd 100 Mo 130 Te 76 Ge 96 Zr 48 Ca 82 Se 136 Xe 2 3 4 5 Q [MeV]

  24. Generally Two Techniques Source ≠ Detector Source = Detector Detector β 1 β 1 Source Detector β 2 Detector β 2 Pros: Pros: +Easy to change source +Energy resolution isotope +Mass +Background mitigation +Detection Efficiency +Topology Cons: Cons: -Mass -Background mitigation -Detection Efficiency -Topology

  25. Incomplete (and outdated) overview of experiments Q ββ Isotope Experiment Technique Mass Enriched Start/Stage [MeV] 130 Te Cuoricino TeO 2 bolometers 40.7kg No 2.6 Done 82 Se, 100 Mo NEMO-3 tracko-calo 0.9kg/6.9kg Yes 3.37 Done 136 Xe EXO LXe [tracking] 170kg 80% 2.458 Done 76 Ge Ge diodes in LAr 18kg/35kg 86% 2.04 2011/2015 GERDA Phase I/II 76 Ge Majorana Ge diodes 30kg 86% 2.04 2015 136 Xe Isotope in LS 380/750kg 90% 2.458 2011/2019 KamLAND-Zen 130 Te TeO 2 bolometers CUORE 204kg No 2.53 2016 130 Te SNO+ Isotope in LS 750kg No 2.53 2020 136 Xe nEXO LXe [tracking] 5000kg 80% 2.458 2027? 76 Ge LEGEND Ge diodes in LAr 200/1000kg 86% 2.04 ? 82 Se, 150 Nd SuperNEMO tracko-calo 7kg/100kg Yes 3.37 ? 136 Xe NEXT GXe 100kg yes 2.458 ? 116 Cd COBRA CdZnTe semicond No 2.8 Prototype 48 Ca CaF 2 cryst in LS CANDLES 0.35kg No 4.27 Prototype 82 Se Lucifer bolom+scintill 100 Mo MOON tracking 1t No 3.03 Prototype DARWIN

  26. KamLAND(-Zen) detector • 1 kton Scintillation Detector • 6.5m radius balloon filled with: } • 20% Pseudocumene (scintillator) • 80% Dodecane (oil) • PPO • 34% PMT coverage • ~1300 17” fast PMTs 20 m • ~550 20” large PMTs • Water Cherenkov veto • Operational since 2002 1800 m 3 Buffer Oil Water Cherenkov 3200 m 3 Outer Detector

  27. Mini-Balloon • Requirements Corrugated nylon tube (7 m) • Chemical compatibility with LS Vectran strings (12) • Mechanically strong, low radioactivity PEEK connector • Barrier against Xe: Tube • loss < 220g/yr Cone • Transmission of scintillation light Straps (12) 1.54m • 99.4% at 400nm Balloon (24 gores) Belt and polar cap • Material: 25 μ m thick ultra- pure nylon • U/Th/K ≲ 10 -12 g/g • 1/4 & full scale tests in air and water

  28. Mini-Balloon Construction: May-Aug 2011 Near Sendai

  29. Difference in refractive index LS and Xe-LS 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend