neutrino coherent scattering neutrino dipole moments and
play

Neutrino Coherent Scattering, neutrino dipole moments, and - PowerPoint PPT Presentation

Neutrino Coherent Scattering, neutrino dipole moments, and connection to cosmology A.B. Balantekin ACFI Workshop on Neutrino-Electron Scattering at Low Energies April 2019 Understanding neutrino-nucleus interactions are essential to neutrino


  1. Neutrino Coherent Scattering, neutrino dipole moments, and connection to cosmology A.B. Balantekin ACFI Workshop on Neutrino-Electron Scattering at Low Energies April 2019

  2. Understanding neutrino-nucleus interactions are essential to neutrino physics: for example consider a core-collapse supernova. Balantekin)and)Fuller,)Prog.)Part.)Nucl.)Phys.) 71 162)(2013) or)a)long?baseline)experiment

  3. How can we accurately calculate neutrino-nucleus cross sections and beta decay rates? For many aspects of SN physics we need to know what happens when a 10-40 MeV neutrino hits a nucleus? Where does the strength lie? What is g A /g V ? Neutrino#wave# function ! "#$ ≈ 1 +# '() − + , () , + ⋯ First5 allowed forbidden Second5 forbidden As the incoming neutrino energy increases, the contribution of the states which are not well-known increase, including first- and even second- forbidden transitions .

  4. Example of an approach from the first principles: Using effective field theory for low-energy neutrino-deuteron scattering Below&the&pion&threshold& 3 S 1 ! 1 S 0 transition&dominates&and&one&only& needs&the&coefficient&of&the&two8body&counter&term,&L 1A (isovector two8 body&axial&current) L 1A can&be&obtained&by& comparing&the&cross&section& " (E)& =& " 0 (E)&+&L 1A " 1 (E)&with&cross8 section&calculated&using&other& approaches&or&measured& experimentally&(e.g.&use&solar& neutrinos&as&a&source).

  5. Example of an approach from the first principles: Using effective field theory for low-energy neutrino-deuteron scattering Below$the$pion$threshold$ 3 S 1 ! 1 S 0 transition$dominates$and$one$only$ needs$the$coefficient$of$the$twoGbody$counter$term,$L 1A (isovector twoG body$axial$current) L 1A can$be$obtained$by$ comparing$the$cross$section$ " (E)$ =$ " 0 (E)$+$L 1A " 1 (E)$with$crossG section$calculated$using$other$ approaches$or$measured$ experimentally$(e.g.$use$solar$ neutrinos$as$a$source). A.B.$Balantekin$and$H.$Yuksel,$PRC$ 68# 055801$(2003)

  6. Example of an approach from the first principles: Using effective field theory for low-energy neutrino-deuteron scattering Below$the$pion$threshold$ 3 S 1 ! 1 S 0 transition$dominates$and$one$only$ needs$the$coefficient$of$the$twoGbody$counter$term,$L 1A (isovector twoG body$axial$current) L 1A can$be$obtained$by$ comparing$the$cross$section$ " (E)$ =$ " 0 (E)$+$L 1A " 1 (E)$with$crossG section$calculated$using$other$ approaches$or$measured$ experimentally$(e.g.$use$solar$ neutrinos$as$a$source). L 1A =3.9(0.1)(1.0)(0.3)(0.9) fm 3 at$ a$renormalization$scale$set$by$the$ physical$pion$mass Savage$et$al.,$PRL$119,$062002$(2017) Difficult$to$go$beyond$ twoGbody$systems! A.B.$Balantekin$and$H.$Yuksel,$PRC$ 68# 055801$(2003)

  7. A new p-sd shell model (SFO) including up to 2-3 h Ω excitations which can describe well the magnetic moments and Gamow-Teller (GT) transitions in p-shell nuclei with a small quenching for spin g-factor and axial-vector coupling constant Suzuki,'Fujimoto,'Otsuka

  8. 5/2 − 5/2 − An example: ν e + 13 C 3/2 − 1/2+ 5/2+ 3/2 − Suzuki,,Balantekin,,Kajino, 1/2+ Phys.,Rev.,C, 86 ,,015502,(2012) 1/2 − GT 13 N IAS+GT 1/2 − 13 C CK,(circles),vs.,SFO,(lines), NC CC

  9. ! e + 13 C charged-current scattering Proton) emission 10 -40 Total g.s.0of0 σ (cm ² ) 10 -41 13 N 10 -42 Neutron)emission0and0 other0contributions 10 -43 0 10 20 30 40 50 Suzuki,0Balantekin,0Kajino,0Chiba,02019 arXiv:1904.11291 E (MeV)

  10. ̅ Comparison of charged-current cross sections 10 -39 ! " + $% C 10 -40 σ (cm ² ) 10 -41 ! " + $% C 10 -42 10 -43 0 10 20 30 40 50 E (MeV) Suzuki,'Balantekin,'Kajino,'Chiba,'2019

  11. Neutrino Coherent Scattering ) ) !# $, # = ' ( !" 8+ , 2 − 2# + # ) 5 3 ) ) 3 4 # $ /01 2$ ) 3 ) = 2,# 3 4 = 6 − 1 − 4 sin ) < 4 = # /01 = 2$ + , For nearly spherical systems > !? ? ) sin ) 3? 5 3 ) = 1 @ A ? − 1 − 4 sin ) < 4 @ B ? 3 4 3?

  12. ) ) !# $, # = ' ( !" 8+ , 2 − 2# + # ) 5 3 ) ) 3 4 # $ /01 " $ ∝ $ ) + nuclear corrections 13 C 10 -12 E 2 10 -13 σ (fm ² ) PRELIMINARY exact 10 -14 12 C 13 C 10 -15 Suzuki, Balantekin, 10 -16 Kajino Chiba 0 20 40 60 80 100 120 140 E (MeV) Suzuki,<Balantekin,<Kajino,<Chiba,<2019

  13. F ( Q 2 ) = 1 + η 2 Q 2 + η 4 Q 4 + · · · , σ ( E ) = G 2 ✓ ◆ 1 + 8 3 η 2 E 2 + 8 2 + 2 η 4 ) E 4 + · · · 4 π Q 2 W E 2 3( η 2 F − 2 ✓ E + 16 3 η 2 E 3 + 24 ◆ � 2 + 2 η 4 ) E 5 + · · · 3 ( η 2 + · · · M 10 -12 10 -13 σ (fm ² ) 10 -14 10 -15 10 -16 0 20 40 60 80 100 120 140 E (MeV)

  14. Coherent elastic neutrino cross sections 5 x 10 -40 4 x 10 -40 13 C σ (cm ² ) 12 C 3 x 10 -40 2 x 10 -40 1 x 10 -40 0 0 100 200 300 400 500 Maximum recoil energy (keV)

  15. Reactor neutrino experiments to measure the remaining mixing angle also measure the reactor neutrino flux

  16. Daya Bay,& arXiv:1904.07812

  17. PROSPECT(Collaboration,(J.(Phys.(G( 43 ,(113001((2016)(

  18. NEUTRINO-4 claim arXiv:'1809.10561

  19. PROSPECT() arXiv:1806.02784 Oscillation*Exclusion

  20. ; ; An alternative solution :" ¹³ C(ν, % & ')¹²C ٭ (4.4-./)→¹²C(g.s.) + γ 4.4 MeV prompt photon and proton recoils Berryman,"Bradar,"Huber,"arXiv:"1803.08506 from thermalized neutron can mimic neutrinos around 5 MeV

  21. ; ; An alternative solution :" ¹³ C(ν, % & ')¹²C ٭ (4.4-./)→¹²C(g.s.) + γ 4.4 MeV prompt photon and proton recoils Berryman,"Bradar,"Huber,"arXiv:"1803.08506 from thermalized neutron can mimic neutrinos around 5 MeV HOWEVER State of the art SM calculation using SFO All"states"in" 12 C Hamiltonian which 10 -41 includes tensor and g.s.in 12 C enhanced monopole interactions is too 10 -42 σ (cm ² ) small. 4.4"MeV"state"in" 12 C ➜ This solution 10 -43 requires BSM physics. PRELIMINARY 10 -44 8 → 59 C+ ̅ 56 C+ ̅ % + n 10 20 30 40 50 60 Suzuki,"Balantekin,"Kajino,"Chiba E (MeV)

  22. Introduce a magnetic moment operator, ˆ µ Example: Neutrino-electron scattering via magnetic moment µ | ˆ 2 ∑ ν i ˆ = ν e ˆ σ ∝ µ ν e µ ν e i µ | = ˆ Dirac magnetic moment ˆ µ µ T = − ˆ ˆ Majorana magnetic moment µ " % = α 2 π d σ 1 − 1 A reactor experiment 2 2 µ eff $ ' measuring electron antineutrino dT e m e T e E ν # & magnetic moment is an inclusive 2 one, i.e. it sums over all the 2 = − iE j L µ ji ∑ ∑ neutrino final states U ej e µ eff i j

  23. Neutrino Magnetic Moment in the Standard Model µ ij = − eG F * f ( r ∑ 8 2 π 2 ( m i + m j ) U  i U  j  ) Symmetry Principles  ! µ " → 0 as # $ → 0 2 $ '  ) ≈ − 3 2 + 3 m   + … , f ( r 4 r r  = & ) M W % ( Standard Model (Dirac)

  24. Standard Model (only) contribution to the Dirac neutrino magnetic moment measured at reactors A.B.B.,$N.$Vassh,$PRD$ 89# (2014)$073013 Cosmological$limits A.B.B.$&$ N.$Vassh

  25. Reactors vs. solar Cerenkov detectors Dirac Majorana A.B.B. & N. Vassh AIP Conf.Proc. 1604 (2014) 150 arXiv:1404.1393

  26. Extension of the red giant branch in globular clusters Globular(cluster(M5(( ! μ ν <(4.5(× 10 712 μ B (95%(C.L.) arXiv:1308.4627

  27. µ ! =10 -10 µ B electroweak µ ! =10 -11 µ B µ ! =10 -12 µ B

  28. ( + 2 " % 2 m e d σ dT = G F 2 1 − T ) m e T 2 + g V − g A 2 − g V ( 2 * - ( ) ( ) g V + g A + g A weak $ ' 2 2 π E ν E ν * - # & ) , " % + πα 2 µ 2 T − 1 1 magnetic $ ' 2 m e E ν # & g v = 2sin 2 θ W + 1/ 2 " + 1/ 2 for electron neutrinos $ g A = # − 1/ 2 for electron antineutrinos $ % ν j e − γ ν e e −

  29. Classical screening in an electron- positron plasma g 1 d 3 p ∫ ( ) n ± = e ( E ± µ )/ T + 1 ⇒ ρ b = − e n − − n + 3 ( ) 2 π Introducing a charge Ze at r = 0 will create a potential φ $ ' ρ a = − e 1 1 d 3 p ∫ e ( E − e φ − µ )/ T + 1 − & ) e ( E + e φ + µ )/ T + 1 π 2 % ( ∇ 2 φ = − 4 π ρ a − ρ b + Ze δ 3 ( r ) $ ' % ( $ ' , ∂ 2 / ∇ 2 φ = − − 1 2 + 4 π Ze δ 3 ( r ) ( ) 3 ( ) ( ) 2 φ + 2 π 1 e φ ) + O e φ ∂ µ 2 ρ b & . λ D - 0 % ( 1 ] ⇒ φ ( r ) = Ze 2 = e 2 ∂ [ ( ) ∂ µ n − − n + r exp − r / λ D 4 πλ D Explicitly verified in Q.E.D. only up to third order.

  30. Quantum derivation in finite-temperature Q.E.D. 1 2 = −Π 00 k 0 = 0, k → 0 ( ) λ D d 3 p Tr γ 0 G ( p ) Γ 0 ( p , p ) G ( p ) ( ) = − e 2 T ∑ ∫ 3 ( ) 2 π n p ( + d 3 p Tr γ 0 G ( p ) ∂ G − 1 = − e 2 T ∑ ∫ ∂ µ ( p ) G ( p ) * - 3 ( ) 2 π ) , n p d 3 p = e 2 ∂ Tr γ 0 G ( p ) ( ) ∑ ∫ ∂ µ T 3 ( ) 2 π n p ( + = e 2 ∂ 2 = e 2 ∂ n ∂ µ 2 P ( µ , T ) * - ∂ µ ) , T Note that the pressure is so far calculated only to order e 3 at finite temperature

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend