review on sterile neutrinos carlo giunti
play

Review on Sterile Neutrinos Carlo Giunti INFN, Torino, Italy SSP - PowerPoint PPT Presentation

Review on Sterile Neutrinos Carlo Giunti INFN, Torino, Italy SSP 2018 7th Symposium on Symmetries in Subatomic Physics 11-15 June 2018, Aachen, Germany C. Giunti Review on Sterile Neutrinos SSP 2018 11 June 2018 1/25 Beyond


  1. Review on Sterile Neutrinos Carlo Giunti INFN, Torino, Italy SSP 2018 7th Symposium on Symmetries in Subatomic Physics 11-15 June 2018, Aachen, Germany C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 1/25

  2. Beyond Three-Neutrino Mixing: Sterile Neutrinos L osc = 4 π E σ had [ nb ] m 2 ν . . ∆ m 2 . . . . 3 ν ALEPH 30 DELPHI ν 5 ν s 2 4 ν L3 OPAL 20 average measurements, error bars increased ν 4 ν s 1 by factor 10 � 1 eV 2 ∆ m 2 10 SBL ν 3 ≃ 2.5 × 10 − 3 eV 2 ∆ m 2 0 86 88 90 92 94 ATM E cm [ GeV ] ν 2 ≃ 7.4 × 10 − 5 eV 2 ∆ m 2 SOL N LEP ν active = 2 . 9840 ± 0 . 0082 ν 1 ν e ν µ ν τ Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 2/25

  3. Sterile Neutrinos from Physics Beyond the SM ◮ Neutrinos are special in the Standard Model: the only neutral fermions ◮ Active left-handed neutrinos can mix with non-SM singlet fermions often called right-handed neutrinos ◮ Light left-handed anti- ν R are light sterile neutrinos ν c R → ν sL (left-handed) ◮ Sterile means no standard model interactions [Pontecorvo, Sov. Phys. JETP 26 (1968) 984] ◮ Active neutrinos ( ν e , ν µ , ν τ ) can oscillate into light sterile neutrinos ( ν s ) ◮ Observables: ◮ Disappearance of active neutrinos (neutral current deficit) ← CE ν NS ◮ Indirect evidence through combined fit of data (current indication) ◮ Short-baseline anomalies + 3 ν -mixing: ∆ m 2 21 ≪ | ∆ m 2 31 | ≪ | ∆ m 2 41 | ≤ . . . ν 1 ν 2 ν 3 ν 4 . . . ν e ν µ ν τ ν s 1 . . . C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 3/25

  4. Effective 3+1 SBL Oscillation Probabilities Appearance ( α � = β ) Disappearance � ∆ m 2 � ∆ m 2 � � 41 L 41 L ≃ sin 2 2 ϑ αβ sin 2 ≃ 1 − sin 2 2 ϑ αα sin 2 P SBL P SBL ( − ) ( − ) ( − ) ( − ) 4 E 4 E ν α → ν β ν α → ν α sin 2 2 ϑ αα = 4 | U α 4 | 2 � sin 2 2 ϑ αβ = 4 | U α 4 | 2 | U β 4 | 2 1 − | U α 4 | 2 �   U e 1 U e 2 U e 3 U e 4 ◮ CP violation is not observable in SBL   U µ 1 U µ 2 U µ 3 U µ 4 experiments!   U =     U τ 1 U τ 2 U τ 3 U τ 4 ◮ Observable in LBL accelerator exp.     U s 1 U s 2 U s 3 U s 4 sensitive to ∆ m 2 ATM [de Gouvea et al, PRD 91 (2015) SBL 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD ◮ 6 mixing angles 91 (2015) 073017, PLB 757 (2016) 142; Kayser et al, JHEP 1511 (2015) ◮ 3 Dirac CP phases 039, JHEP 1611 (2016) 122] and solar exp. sensitive to ∆ m 2 ◮ 3 Majorana CP phases SOL [Long, Li, CG, PRD 87, 113004 (2013) 113004] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 4/25

  5. 3+1: Appearance vs Disappearance ◮ Amplitude of ν e disappearance: sin 2 2 ϑ ee = 4 | U e 4 | 2 � 1 − | U e 4 | 2 � ≃ 4 | U e 4 | 2 ◮ Amplitude of ν µ disappearance: sin 2 2 ϑ µµ = 4 | U µ 4 | 2 � 1 − | U µ 4 | 2 � ≃ 4 | U µ 4 | 2 ◮ Amplitude of ν µ → ν e transitions: sin 2 2 ϑ e µ = 4 | U e 4 | 2 | U µ 4 | 2 ≃ 1 4 sin 2 2 ϑ ee sin 2 2 ϑ µµ quadratically suppressed for small | U e 4 | 2 and | U µ 4 | 2 ⇓ Appearance-Disappearance Tension [Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 5/25

  6. Gallium Anomaly Gallium Radioactive Source Experiments: GALLEX and SAGE e − + 51 Cr → 51 V + ν e e − + 37 Ar → 37 Cl + ν e ν e Sources: E ≃ 0 . 75 MeV E ≃ 0 . 81 MeV ν e + 71 Ga → 71 Ge + e − Test of Solar ν e Detection: 1.1 GALLEX SAGE Cr1 Cr 1.0 R = N exp N cal GALLEX SAGE Cr2 Ar 0.9 0.8 R = 0.84 ± 0.05 0.7 ≈ 2 . 9 σ deficit � L � GALLEX = 1 . 9 m � L � SAGE = 0 . 6 m [SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807; Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344, SBL � 1 eV 2 ≫ ∆ m 2 MPLA 22 (2007) 2499, PRD 78 (2008) 073009, ∆ m 2 PRC 83 (2011) 065504] ATM ◮ 3 He + 71 Ga → 71 Ge + 3 H cross section measurement [Frekers et al., PLB 706 (2011) 134] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 6/25

  7. Reactor Electron Antineutrino Anomaly [Mention et al, PRD 83 (2011) 073006] New reactor ¯ ν e fluxes: Huber-Mueller (H-M) [Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617] 1.20 Bugey−3 Daya Bay Krasnoyarsk RENO Bugey−4+Rovno91 Double Chooz Nucifer Rovno88 Chooz Gosgen+ILL Palo Verde SRP 1.10 R = N exp N cal 1.00 0.90 0.80 R = 0.934 ± 0.024 0.70 10 2 10 3 10 L [m] ≈ 2 . 8 σ deficit C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 7/25

  8. 1.20 Bugey−4 Rovno88 Gosgen Krasnoyarsk Nucifer Rovno91 Bugey−3 ILL SRP 1.10 1.00 P ν e →ν e R 0.90 DC DB DB DC E ≈ 4MeV − sin 2 2 ϑ ee = 0.1 R 0.80 2 = 0.1 eV 2 ∆ m 41 2 = 0.5 eV 2 ∆ m 41 2 = 1.0 eV 2 ∆ m 41 0.70 10 2 10 3 1 10 L [m] SBL � 0 . 5 eV 2 ≫ ∆ m 2 ∆ m 2 ATM ◮ SBL oscillations are averaged at the Daya Bay, RENO, and Double Chooz near detectors = ⇒ no spectral distortion C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 8/25

  9. Reactor Antineutrino 5 MeV Bump (Data - MC) / MC 0.2 ◮ Cannot be explained by neutrino 0.1 oscillations (SBL oscillations are 0 averaged in RENO, DC, DB). 0.1 − 1 2 3 4 5 6 7 8 ◮ It is likely due to a theoretical Prompt Energy (MeV) miscalculation of the spectrum. [RENO, arXiv:1511.05849] ◮ Heretic solution: detector energy Data / Predicted Data 1.4 0.25 MeV No oscillation nonlinearity. [Mention et al, PLB 773 (2017) 307] Reactor flux uncertainty Total systematic uncertainty 1.2 2 Best fit: sin 2 θ = 0.090 13 ◮ ∼ 3% effect on total flux, but if it is 1.0 an excess it increases the anomaly! 0.8 ◮ No post-bump complete calculation 0.6 of the neutrino fluxes. 1 2 3 4 5 6 7 8 Visible Energy (MeV) ◮ Nominal Huber-Mueller flux [Double Chooz, arXiv:1406.7763] calculation uncertainty: ∼ 2 . 5%. ◮ Guessed true flux uncertainty: ∼ 5%. [Hayes and Vogel, ARNPS 66 (2016) 219] ◮ Bottom line: the status of the reactor anomaly is controversial! [Daya Bay, arXiv:1508.04233] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 9/25

  10. NEOS [PRL 118 (2017) 121802 (arXiv:1610.05134)] 10 (a) Prompt Energy [MeV] ε 60 7 ◮ Hanbit Nuclear Power Complex in − 10 1 6 50 Events /day/100 keV 5 Yeong-gwang, Korea. − 2 10 4 40 3 − 3 10 2 ◮ Thermal power of 2.8 GW. 1 2 3 4 5 6 7 8 12 30 Neutrino Energy [MeV] Data signal (ON-OFF) 20 Data background (OFF) ◮ Detector: a ton of Gd-loaded ν MC 3 (H-M-V) 10 ν MC 3 (Daya Bay) liquid scintillator in a gallery approximately 24 m from the 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 10 1.1 reactor core. NEOS/Daya Bay (c) Data/Prediction Systematic total ◮ The measured antineutrino event 1.0 rate is 1976 per day with a signal 2 (1.73 eV , 0.050) 2 to background ratio of about 22. (2.32 eV , 0.142) 0.9 ⋅ ⋅ 1 2 3 4 5 6 7 10 Prompt Energy [MeV] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 10/25

  11. DANSS [Solvay Workshop, 1 December 2017; La Thuile 2018, 3 March 2018; Neutrino 2018, 8 June 2018] ◮ Installed on a movable platform 0.76 under a 3 GW reactor. Ratio Down/Up ◮ Large neutrino flux. 0.72 ◮ Reactor shielding of cosmic rays. 0.68 ◮ Variable source-detector distance DANSS with the same detector! No−Oscillations 0.64 Oscillations Best Fit Down = 12 . 7 m 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Up = 10 . 7 m Positron Energy [MeV] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 11/25

  12. Model-Independent ¯ ν e SBL Oscillations [Gariazzo, CG, Laveder, Li, PLB 782 (2018) 13, arXiv:1801.06467] 10 2 σ DANSS NEOS ∼ 3 . 7 σ ∆ m 2 41 = 1 . 29 ± 0 . 03 2 [eV 2 ] sin 2 2 ϑ ee = 0 . 049 ± 0 . 011 1 ∆ m 41 sin 2 ϑ 14 = | U e 4 | 2 NEOS+DANSS sin 2 ϑ 14 = 0 . 012 ± 0 . 003 1 σ 2 σ 3 σ sin 2 ϑ 13 = 0 . 022 ± 0 . 001 10 − 1 10 − 3 10 − 2 10 − 1 1 sin 2 2 ϑ ee C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 12/25

  13. Comparison with the Reactor and Gallium Anomalies 10 2−3 σ (solid−dashed) Reactor Anomaly Gallium Anomaly ◮ 3 σ agreement. 2 [eV 2 ] ◮ 2 σ tension. 1 ◮ Small overestimate of the ∆ m 41 reactor fluxes. ◮ Small overestimate of the NEOS+DANSS GALLEX and SAGE 1 σ 2 σ efficiencies. 3 σ 10 − 1 10 − 3 10 − 2 10 − 1 1 sin 2 2 ϑ ee C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 13/25

  14. Global Model-Independent ν e and ¯ ν e Disappearance 10 MI ν e Dis ◮ NEOS and DANSS. 1 σ 2 σ ◮ Reactor rates with free 235 U 3 σ and 239 Pu fluxes: r 235 and r 239 . 2 [eV 2 ] ◮ Gallium data with free 1 GALLEX and SAGE ∆ m 41 efficiencies: η G and η S . STEREO (1yr, 2 σ ) PROSPECT ◮ New reactor experiments: (3+3yr, 3 σ ) SoLiD STEREO, Neutrino-4, (1+3yr, 3 σ ) SoLiD, PROSPECT KATRIN (90% CL) 10 − 1 ◮ Kinematic ν 4 mass 10 − 3 10 − 2 10 − 1 1 measurement: KATRIN sin 2 2 ϑ ee [See also Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661] C. Giunti − Review on Sterile Neutrinos − SSP 2018 − 11 June 2018 − 14/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend