massive neutrinos in cosmology part ii cosmology carlo
play

Massive Neutrinos in Cosmology Part II: Cosmology Carlo Giunti - PowerPoint PPT Presentation

Massive Neutrinos in Cosmology Part II: Cosmology Carlo Giunti INFN, Torino, Italy giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it Torino Graduate School in Physics and Astrophysics Torino, May 2018 C. Giunti and C.W. Kim


  1. Massive Neutrinos in Cosmology Part II: Cosmology Carlo Giunti INFN, Torino, Italy giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it Torino Graduate School in Physics and Astrophysics Torino, May 2018 C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 1/52

  2. Thermodynamics of the Early Universe ◮ Thermal equilibrium: g χ � p ) d 3 p n χ = f χ ( � (2 π ) 3 g χ � p ) d 3 p ρ χ = E χ ( � p ) f χ ( � (2 π ) 3 p | 2 | � g χ � p ) d 3 p p χ = p ) f χ ( � (2 π ) 3 3 E χ ( � 1 ◮ Statistical distribution: f χ ( � p ) = p ) − µ χ ) / T χ ± 1 e ( E χ ( � ◮ Chemical potential: ◮ a + b ⇆ c + d = ⇒ µ a + µ b = µ c + µ d ◮ µ γ = 0 and χ + ¯ χ → γγ = ⇒ µ χ = − µ ¯ χ ◮ Conserved charge = ⇒ µ χ � = 0 if n χ � = n ¯ χ C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 2/52

  3. 1 ◮ Relativistic limit: T χ ≫ m χ and T χ ≫ µ χ = ⇒ f χ ( � p ) ≃ p | / T χ ± 1 e | �  ζ (3) π 2 g χ T 3 ( χ = boson)   χ n χ ≃ 3 ζ (3) π 2 g χ T 3 ( χ = fermion) ,   χ 4 π 2  30 g χ T 4 ( χ = boson)   χ ρ χ ≃ π 2 7 30 g χ T 4 ( χ = fermion) ,   χ 8 p χ ≃ 1 3 ρ χ , ◮ Average energy: π 4  30 ζ (3) T χ ≃ 2 . 701 T χ ( χ = boson)    � E χ � ≃ �| � p χ |� ≃ 7 π 4 180 ζ (3) T χ ≃ 3 . 151 T χ ( χ = fermion)    C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 3/52

  4. Neutrino Decoupling CNB BBN CMB C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 4/52

  5. ◮ Neutrinos are in equilibrium in the early Universe through weak interactions: ( − ) ( − ) ( − ) ( − ) ν ⇆ e + e − ν ¯ ν e ⇆ ν e ν N ⇆ ν N ν e n ⇆ pe − ν e p ⇆ ne + n ⇆ pe − ¯ ¯ ν e ◮ Interaction rate: Γ ν = n ν � σ v � ∼ G 2 F T 5 n ν ∼ T 3 σ ∼ G 2 F T 2 v ≃ 1 ◮ The rate of expansion is given by the Friedmann equation: ˙ 8 π R ( t ) ρ − k H 2 = H ( t ) ≡ R 2 3 M P R ( t ) ρ rad with ρ rad = π 2 8 π ◮ In the radiation-dominated era: H 2 ≃ 30 g ∗ T 4 3 M 2 P 2 π 3 / 2 √ g ∗ T 2 g χ + 7 � � √ H ≃ g ∗ = g χ 8 3 5 M P χ =relativistic χ =relativistic bosons fermions = 2 + 7 8 4 + +7 + g ( e ± ) ◮ Before ν decoupling: g ∗ = g ( γ ) + g ( ν ) 8 6 = 10 . 75 ∗ ∗ ∗ C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 5/52

  6. � − 1 / 3 ∼ 1 MeV T ν -dec ∼ M P G 2 ◮ Neutrino decoupling: Γ ν ∼ H � = ⇒ F ◮ A more precise calculation takes into account that the dominant processes for T � 100 MeV are ( − ) ( − ) ν ⇆ e + e − ν ¯ ν e ⇆ ν e ( − ) ( − ) ν e,µ,τ ν e,µ,τ e − , e + e + , e − ν e , ¯ ν e ν e , ¯ ν e W Z W e − , e + ν e , ¯ ν e e + , e − ν e , ¯ ν e e ± e ± ◮ Since the rates of these processes depend on neutrino energy E ≃ p , the decoupling temperature is not instantaneous and depends on p : � p � p � − 1 / 3 � − 1 / 3 T ν e -dec ( p ) ≃ 2 . 7 T ν µ,τ -dec ( p ) ≃ 4 . 5 T T ◮ Taking into account that � E � ≃ 3 T , one obtains: T ν e -dec ≃ 1 . 9 MeV T ν µ,τ -dec ≃ 3 . 1 MeV C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 6/52

  7. 1 ⇒ f ν -dec ◮ Hot relics: relativistic at decoupling = ( � p ) ≃ p | / T ν -dec + 1 ν e | � d r 2 � d θ 2 + sin 2 θ d φ 2 �� ◮ FRW metric: d τ 2 = d t 2 − R 2 ( t ) 1 − k r 2 + r 2 � � − 1 � R ◮ Momentum scaling with expansion: | � p | = | � p | ν -dec R ν -dec � − 1 � � | � p | ( R / R ν -dec ) � 1 f ν ( � p ) ≃ exp + 1 = T ν -dec p | / T ν + 1 e | � � − 1 � R Effective temperature scales with expansion: T ν = T ν -dec R ν -dec C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 7/52

  8. Electron-Positron Annihilation ◮ After neutrino decoupling at T ≃ 1 MeV e ± and γ are the only relativistic particles in thermal equilibrium. ◮ At m e / 3 ≃ 0 . 2 MeV electrons and positrons became nonrelativistic: out-of-equilibrium e − e + → γγ heat the photon distribution. ◮ During this phase the photon temperature does not scate as R − 1 . = 2 π 2 s = ρ + p 45 g s T 3 ◮ Entropy density: γ T g χ + 7 � � g s = g χ 8 χ =interacting χ =interacting relativistic relativistic bosons fermions T γ ∝ g − 1 / 3 ◮ Entropy conservation: s ∝ R − 3 R − 1 = ⇒ s C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 8/52

  9. � R after � − 1 T after ◮ Before and after e − e + annihilation: ν = T before R before ν � g after � − 1 / 3 � R after � g after � − 1 / 3 T after � − 1 T after γ s s ν = = T before g before R before g before T before γ ν s s 1.5 ◮ T before = T before T ! = 1.401 T " γ ν 1.4 = 2 + 7 + g ( e ± ) = g ( γ ) ◮ g before 1.3 8 4 s s s T ! / T " e + e - # !! 1.2 = g ( γ ) ◮ g after = 2 s s 1.1 � 4 � 1 / 3 T ! = T " 1 ◮ T after T after ≃ 0 . 7138 T after = ν γ γ 11 10 1 0.1 T ! (MeV) � 4 � 1 / 3 γ = 1 . 945 ± 0 . 001 K = (1 . 676 ± 0 . 001) × 10 − 4 eV T 0 T 0 ν = ◮ 11 C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 9/52

  10. Effective Number of Relativistic Degrees Of Freedom � 4 � � � 4 / 3 1 + 7 ◮ Radiation density: ρ rad = ρ γ N eff 8 11 N ν Why N ν ◮ Three standard neutrinos: eff = 3 . 046 eff > 3? [Mangano et al, NPB 729 (2005) 221] → N ν eff = 3 . 045 [de Salas, Pastor, JCAP 1607 (2016) 051] ◮ Neutrino decoupling was not instantaneous at T ν -dec . ◮ Higher-energy neutrinos decoupled later and were not completely decoupled during e − e + annihilation. ( − ) ( − ) ◮ This effect is different for ν e and ν µ,τ because of the additional ( − ) charged-current interactions of ν e : ( − ) ( − ) ν e,µ,τ ν e,µ,τ e − , e + e + , e − ν e , ¯ ν e ν e , ¯ ν e W Z W e − , e + ν e , ¯ ν e e + , e − ν e , ¯ ν e e ± e ± C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 10/52

  11. 1 ◮ Equilibrium distribution: f eq ( � p ) ≃ e p / T + 1 ◮ Nonthermal distortions: f ν α ( � p , t ) = f eq ( � p ) (1 + δ ν α ( � p , t )) ◮ Boltzmann equation: � ∂ � ∂ t − Hp ∂ � � f ν α ( � p , t ) = C f ν α ; f ν β , f e ± ∂ p 1.05 No osc ν e θ 13 =0 1.04 T γ s 2 13 =0.047 ν e R = T − 1 f ν / f eq for y = 10 1.03 ν ν µ ν τ 1.02 x = m e R = m e / T ν ν x 1.01 y = pR = p / T ν 1 0.1 1 10 x = m e R [Mangano et al, NPB 729 (2005) 221, arXiv:hep-ph/0506164] C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 11/52

  12. ◮ Neutrino oscillations mix the flavor distributions. √ √ 2 G F ( n ℓ − − n ℓ + ) − 8 2 G F p ◮ Matter potential: V ( ℓ ) CC = ( ρ ℓ − + ρ ℓ + ) 3 m 2 W ∆ m 2 31 / 2 p ν e ⇆ ν µ,τ ( ϑ 13 ) ν µ ⇆ ν τ ( ϑ 23 ) ∆ m 2 21 / 2 p ν e ⇆ ν µ,τ ( ϑ 12 ) V ( ρ ) CC V ( n ) CC ν µ,τ dec ν e dec [Lesgourgues, Mangano, Miele, Pastor, Neutrino Cosmology, Cambridge University Press, 2013] C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 12/52

  13. 1.05 1.06 No osc No osc ν e θ 13 =0 1.05 T γ θ 13 =0 1.04 s 2 13 =0.047 s 2 13 =0.047 ν e 1.04 Frozen f ν (y) / f eq (y) f ν / f eq for y = 10 1.03 1.03 1.02 1.02 ν x ν x 1.01 1.01 1 1 0 2 4 6 8 10 12 0.1 1 10 x = m e R y = p R [Mangano et al, NPB 729 (2005) 221, arXiv:hep-ph/0506164] R = T − 1 x = m e R = m e / T ν y = pR = p / T ν ν N eff = 3 + δρ ν e + δρ ν µ + δρ ν τ = 3 . 046 ρ ν ρ ν ρ ν  f ν 1 ≃ 0 . 7 f ν e + 0 . 3 f ν µ,τ  � | U α k | 2 f ν α f ν k = ⇒ f ν 2 ≃ 0 . 3 f ν e + 0 . 7 f ν µ,τ f ν 3 ≃ f ν µ,τ α = e ,µ,τ  C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 13/52

  14. Energy Density  ρ c ≃ ρ R ∝ R − 4   ∝ R − 3  ρ M   R − 4 ∝ R Rad: ρ c ρ Λ 1  R − 4 ∝ R 4  ∝   ρ c   ρ c ≃ ρ M ∝ R − 3   ∝ R − 4  ρ R m 3 ≃ 0 . 05 eV  R − 3 ∝ R − 1  Mat: ρ c ρ Λ 1 m 2 ≃ 0 . 008 eV  R − 3 ∝ R 3  ∝    ρ c m 1 ≪ m 2  ρ c ≃ ρ Λ = const. ρ R  R / R 0  ∝ R − 4  Λ: ρ c ρ c = 3 M P ρ M 8 π H 2 ∝ R − 3 Ω i = ρ i /ρ c    ρ c C. Giunti − Massive Neutrinos in Cosmology – II − Torino PhD Course − May 2018 − 14/52

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend